The OPTOMICS project (EU Grant No. 101017802) is a Complementary Grant to two additional EU Horizon 2020 projects, Neurotwin (Grant No. 101017716) and DIGIPREDICT (Grant No. 101017915). Through collaborative research, dissemination and communication activities with these complementary projects, we aim to increase public awareness and streamline the process of developing and ensuring the success of digital twin technologies. Read more about our Complementary Projects below and stay tuned for updates on our collaborative efforts!
Twitter: @neurotwin

Recent findings suggest that non-invasive brain stimulation may be a valuable option in conditions such as epilepsy or Alzheimer's (AD). Still, a better understanding of mechanisms and patient-specific factors is needed. Personalized hybrid brain models uniting the physics of electromagnetism with physiology – neurotwins or NeTs – are poised to play a fundamental role in understanding and optimizing the effects of stimulation at the individual level.  We ambition to deliver disruptive solutions through model-driven, individualized therapy. We will build a computational framework – weaved and validated across scales and levels of detail– to represent the mechanisms of interaction of electric fields with brain networks and assimilate neuroimaging data. This will allow us to characterize the dynamical landscape of the individual brain and define strategies to restore healthy dynamics. Benefitting from existing databases of healthy and AD individuals, we will deliver the first human and rodent NeTs predicting the effects of stimulation on dynamics. We will then collect detailed multimodal measurements in mice and humans to improve the predictive power of local and whole-brain models under the effects of electrical stimulation, and translate these findings into a technology pipeline for the design of new personalized neuromodulation protocols which we will test in a cohort of AD patients and healthy controls in randomized double-blinded studies.  With research at the intersecting frontier of nonlinear dynamics, network theory, biophysics, engineering, neuroscience, clinical research, and ethics, Neurotwin will deliver model-driven breakthroughs in basic and clinical neuroscience, with patients ultimately benefiting from safe, individualized therapy solutions.


The interplay between viral infection, host response, development of (hyper)inflammation and cardiovascular injury in COVID-19 is currently poorly understood which makes it difficult to predict which patients remain with mild symptoms only and which patients rapidly develop multi organ failure. The solution offered by DIGIPREDICT is an Edge Artificial Intelligence (AI) based, high-tech personalized computational and physical Digital Twin vehicle representing patient-specific (patho)physiology, with embedded disease progression prediction capability, focusing on COVID-19 and beyond. DIGIPREDICT proposes the first of its kind Digital Twin, designed, developed and calibrated on i) patient measurements of various Digital Biomarkers and their interaction, ii) Organ-On-Chips (OoCs) as physical counterpart using patient blood for personalized screening and iii) integration of those physiological readouts using AI at Edge technologies. The final goal is to identify and validate patient-specific dynamic digital fingerprints of complex disease state and prediction of the progression as a basis for assistive tools for medical doctors and patients. Using and improving state-of-the-art OoCs and Digital Biomarkers (for physiology and biomarkers in interstitial fluid) we will measure detailed response to viral infection. By closely monitoring the response with wearable multi-modal Edge AI patches, we aim to predict in near real-time the progression of the disease, support early clinical decision and to propose patient-specific therapy using existing drugs. We will combine scientific and technical excellence in a highly multi- and inter-disciplinary project, bringing together medical, biological, electronical, computer, signal processing and social science communities around Europe to setup Digital Twin at Edge. We will enable an Edge-to-Cloud vision, significantly advancing current state of the art and setting up a new European community for researching and applying Digital Twins.