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Three-dimensional (3D) image reconstructions are often rendered as two-dimensional images, using
maximum intensity projections (MIPs). However, MIP’s rendering fidelity depends on the alignment of
the individual slices along the projection direction. Also, the presence of noise and artifacts affects the
contrast and the projected image elements. We introduce enhanced MIP (eMIP), a methodology that
aligns the boundaries (e.g., skin boundary) of adjacent slices of the 3D volume onto the same
coordinate system assumed by MIP (e.g., same depth) and applies robust contrast adjustment to
normalize the intensities of the projected slices. We benchmark eMIP on 1725 clinical scans of human
skin, using raster-scanoptoacousticmesoscopy (RSOM) thatwere assessed by 8 experts. Our results
show that eMIP facilitates interpretability compared to conventional MIP and increases consistently
theperceived imagequality. The improveddiagnostic ability of eMIPhas thepotential to replaceMIP in
RSOM and similar modalities.

The maximum intensity projection (MIP) is a useful method to render
three-dimensional (3D) slices of a volumetric reconstruction as a two-
dimensional (2D) image. It is based on projecting voxels with high intensity
from each 3D slice onto the same 2D plane, thus recording the features of
highest contrast observed in the reconstructed volume. MIP is utilized in
different medical imaging applications, including magnetic resonance
angiography, as well as radiological or nuclear imaging studies1–5 to enhance
the visibility of high-density structures.

To exemplify MIP operation, we describe MIP usage in the context of
raster-scan optoacoustic mesoscopy (RSOM), an emerging modality that
allows non-invasive volumetric imaging of the skin and dermal micro-
vasculature, with resolution in the few tens of micrometers or better6–8.
RSOM’s promising potential to diagnose andmonitor cardiometabolic and
skin diseases9–13 requires high-fidelity representations of the 3D recon-
structed tissue volume. However, the accuracy of MIP-generated 2D
representations of RSOM volumetric reconstructions is affected by image
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artifacts (e.g., strong contrast from hairs, artifacts from the reconstruction &
frequency filtering, reflections in the transducer, or shot noise), which pro-
duce random volume elements of high intensity and misguide the MIP
registration14. Another challenge relates to the relative positioning of the 3D
slices and tissueboundaries (e.g., the skin surface) in relation to the coordinate
systemused for computing themaximum intensity projections. For example,
when the MIP method is applied to skin RSOM images, a poor relative
positioning of the skin boundary with the scanning directions will result in
overlapping of skin and vascular structures, challenging image interpretation
and stymying the use of RSOM diagnostically and theranostically15,16.

Therefore, we aimed to develop a data pre-processing methodology
that can align the 3D skin boundary for consistent visualization ofMIP and
reduce the influenceof image artifacts to increase the reliability andaccuracy
of the projections. Termed enhanced-MIP (eMIP), our method first esti-
mates robustly the skin surface in the3Dvolume toposteriorly align the scan
with the lateral projection directions employed by MIP. The skin surface is
identified based on detecting the melanin (a highly absorbing natural pig-
ment that provides color to the skin, eyes, andhair) in the stratum-corneum,
the outermost layer of the epidermis. The 3D RSOM volume is aligned or
flattened by shifting voxel columns in the 3D array along the depth axis, so
that the skin boundary is positioned on a plane parallel to the lateral pro-
jection directions. Previously, somemotion correction algorithms have also
used themelanin layer to detect the skin surface onRSOMdata8 and for skin
flattening12,17, but these algorithms employed manual anatomical segmen-
tationoruser-based tuningof algorithmicparameters18. Conversely, amajor
eMIP focuswas the development of automatedprocesses that donot require
user intervention. Furthermore, previous algorithms were sensitive to sur-
face discontinuations, such as hair. Therefore, a second eMIP goal was to
identify artefacts and discontinuities in the image and remove erro-
neous high-intensity absorbers, so that the skin surface model is
estimated reliably for subsequent alignment on the MIP coordinate
system. eMIP aims to achieve these objectives through iterative
polynomial fits to robustly estimate the position of the skin surface
and outlier exclusions.

Another aspect in order to ensure image fidelity was to improve the
visualization of the reconstructed volume in the context of frequency band
equalization (FBE)11 employed in RSOM images. FBE differentially pro-
cesses high and low frequency signals in the broadband (∼10–100MHz)
collected by RSOM12,19–22. Using digital signal low-pass and high-pass fil-
tering operations, FBE separates the optoacoustic signals into two frequency
bands, so that two 3D volumes are reconstructed6. This approach enhances
the visibility of small structures associated with high frequency components
that could be imperceptible if rendered in the same color and intensity scale
as the much higher-intensity low frequency signals. Finally, MIPs are taken
along the desired direction and fused to create a composite image, in which
images reconstructed in the high frequency band are rendered in a different
color than images of the low frequency band.

In this work, we improve the scaling method used by FBE for the
composite image to ensure that the contrast rendered refers to voxels cor-
responding to true high-contrast tissue structures in both frequency chan-
nels. eMIPwas evaluated on a set of 1725RSOMscans taken on the forearm
and leg of human participants. All images obtained by eMIP orMIP11 were
assessed by eight experts in a random order and each image was assigned a
score (on a scale from 1 to 4 with 4 being the best score) indicating visual
quality. The 3450 eMIP andMIP images constitute the first comprehensive
set of quality-assessed RSOM images that allowed eMIP to be benchmarked
against MIP. For each scan, we average the rates and compute the mean
opinion score (MOS) for comparison of the twomethods, sinceMOSs are a
more reliable quantificationmetric than individual ratings. Using theMOS
dataset, we show that eMIP improved significantly the perceived image
quality of the RSOM scans. Finally, the comprehensive dataset itself can be
used in the future as a starting point to develop faster quality assessment
methods for RSOM images. In summary, eMIP effectively addresses the
limitations of conventional MIP by realigning slice boundaries and
employing advanced contrast normalization, resulting inmore accurate 2D

renderings and enhanced diagnostic potential for RSOM and possibly a
variety of 3D medical imaging modalities.

Results
Limitation of MIP for imaging RSOM volumes with tilted skin
RSOMdetects ultrasoundwaves after optical excitation of chromophores at
predefined points along a raster pattern on the surface of the tissue of
interest. Figure 1a shows the RSOM trajectory by a dashed line inside the
scanning area, which defines in combination with the perpendicular scan-
ning direction (depth) the coordinate system of the RSOM scan (CSRSOM,
see Methods). After scanning, the optoacoustic recorded signal is separated
into two frequencybandswith a low frequencyband (LF; 10–40MHz) and a
high frequency band (HF; 40–99MHz) bandpass filters and independently
reconstructed producing two 3D-volumes. The two volumes, i.e., the LF and
HF reconstruction, are thenmerged using different color channels (e.g., Fig.
1b, c). This frequency separation allows large blood vessels (LF signals) to be
colored in red and the small vascular structures (HF signals) to be colored in
green in a combined RGB-image, where small structures get enhanced
according to FBE (see Methods).

As medical doctors make their diagnosis based on 2D images, 3D
volumes need to be rendered into 2D images. The MIP method (see
Methods) can generate 2D images by projecting the maximum intensity
values of the 3D slices along the chosen direction (x, y or z; Fig. 1b, c) onto
the projection plane. Figure 1d, e shows the resulting lateral MIPs from the
volumes represented in Fig. 1b, c, respectively, to illustrate the effect of an
aligned skin surface on the 2D MIP-generated image. When the skin is
positionedwith respect toCSRSOM such that the skin surface is parallel to the
xy plane, like the 3D volume in Fig. 1b, the skin morphology is easily
identifiable in the x-MIP or y-MIP, due to the different cutaneous vascu-
lature. Thus, we could clearly mark in the x -MIP in Fig. 1d the epidermis
(EP) – determined by the melanin layer – and dermis (DR) – characterized
by the vascular networks in the capillary loops and the vascular plexus.
However, when the skin is tilted (for example, due to a misaligned ultra-
sound detector) or exhibits curvature (as from applied pressure), the lim-
itation of MIP becomes apparent. In these situations, the epidermis and
dermis are at different depths along the yz (or xz) plane (Fig. 1c), meaning
that vascular structures belonging to different layers overlap throughout the
x-MIP (Fig. 1e),making it challenging to distinguish the epidermis from the
dermis and visualize the vasculature clearly.

TheeMIPmethodconsistently renders representative2D images
Toovercome the afore-mentioned limitation ofMIP,we developed eMIP to
improve the 2D visualization of 3D volumes (see Methods). The eMIP
methodhas analgorithmthat automatically corrects the curvature and tilt of
the skin surface on a 3D volume, so that the corrected skin surface is shifted
to be parallel to the xy plane at a defined z value (i.e., depth). Figure 1f
illustrates eMIP’s workflow to achieve the skin flattening. Its surface
detection method first approximates the skin surface in the 3D recon-
structed volume using a polynomial model fitted through a linear least
squares subroutine. Next, outliers are iteratively excluded. The outlier
exclusion is essential to disregard hairs, noise or other high absorbers that
are not part of the skin, suchas shown in the representativeRSOMimages in
Fig. 1g, h. Figure 1i, j demonstrates how eMIP can successfully identify hairs
as outliers (red), so that a suitable polynomial that approximates the skin
surface can be chosen (Fig. 1j).

Images rendered by eMIP are higher quality than images
rendered by MIP
Figure 2 highlights the improvements in quality achieved by eMIP over the
reference method MIP, both qualitatively using representative images and
quantitatively throughquality scoresderived fromexpert assessment. Figure
2a–d demonstrates the benefits of eMIP’s skin surface correction when the
skin is skewed in the 3D volume along one of the side projections. As
explained above, eMIPvisualization aims to solve the problemof a tilted and
curved skin surface with respect to conventional MIP.
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Furthermore, integrating dynamic contrast adjustment through FBE
into the eMIP enables deeper, more accurate and detailed visualization of
skin microvasculature compared to the established techniques applied to
MIP (see Methods). Figure 2e, f present 2D projections along the
x-direction usingMIP and eMIP. The overall brightness of x-MIP in Fig. 2e
is lowdue tonaïve linear contrast scaling,withmaximumreference intensity
set by strong absorbers (marked by red circles). The image of the same
RSOM scan displayed by eMIP (Fig. 2f) after adjusting the contrast dyna-
mically, showcaseswell-adjustedbrightness anda clearer visualizationof the
deeper dermal microvasculature.

More examples of RSOM scans visualized using both methods can be
found in Supplementary Fig. 1 (including rare cases where the surface
detection failed Supplementary Fig. 1b, c andwhereMIPwas preferred over
eMIP due to higher contrast Supplementary Fig. 1d).

TheMOS(meanopinion score asdefined inMethods),was analyzed to
quantitatively determine the degree of improvement in image quality when
eMIPwas compared toMIP. The scores (bad (1), medium (2), good (3) and
perfect (4)) were assigned by eight experts (Methods), who assessed the
quality of 1725 RSOM scans visualized using both MIP and eMIP. For the
two representative scans in Fig. 2a–f, improvement in perceived image
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quality was confirmed quantitatively by a MOS increase of 1.5 and 1.035
points, respectively.

This improvement in perceived image quality is likewise observed
across the entire dataset of 1725 scans. Figure 2g exhibits the mean and
distribution of the MOS from both visualization techniques. The distribu-
tion corresponding to eMIP shows a general right shift towards higher
quality with a lower proportion of images labeled as “bad” quality. The
average MOS of eMIP-rendered images increased by 0.250 points
(p≤ 0:0001;CI ¼ ½0:214; 0:287�) and median MOS by 0.313 points
(p≤ 0:0001;CI ¼ ½0:250; 0:438�) compared to MIP-rendered images (see

Methods). Qualitatively, theMOS improvement of eMIP overMIP (though
varying in magnitude) is consistent across all demographic and technical
subgroups we have tested, including skin tone, age, bodymass index (BMI),
gender, anatomical scan location, baseline quality and relative brightness
between eMIP and MIP visualization. For a detailed breakdown see Sup-
plementary Note 1 and Supplementary Table 1.

Furthermore, eMIP method reduced by almost 30% the low
quality assessed images (i.e., out of the total images, those with a
score of less than 1.5 MOS points decreased from 26.0% with MIP to
18.4% with eMIP).

Fig. 1 | Our developed method enhanced maximum intensity projection (eMIP)
that improves the maximum intensity projection (MIP) of raster-scan optoa-
coustic mesoscopy (RSOM) scans by correcting for misalignments of the skin.
a Schematic depicting the RSOM scanning process on skin. The RSOM coordinate
system (CSRSOM) is shown in a corner of the scanned region. b, c Rendered RSOM
reconstructed volumes and corresponding maximum intensity projections (MIP)
along the three coordinate axes, defined by the CSRSOM. The volumes were obtained
after separately reconstructing raw data of two frequency bands (low and high
frequency, LF and HF, respectively), and merging the reconstructions. The LF
reconstruction, in red, indicates larger vessels and HF reconstruction, in green,
indicates smaller vascular structures. The skin surface is represented with a blue grid
in the volumetric reconstruction. d, e Lateral MIPs along the x-direction (x-MIPs)
corresponding to the volumes in (b) and (c), respectively. As the skin surface is a
plane orthogonal to the z-axis in (b), in the lateral MIP, the epidermis (EP) and
dermis (DR) are clearly resolved thanks to their characteristic vascular morphology.

In contrast, when the skin surface is not parallel to the xy -plane of CSRSOM (as in the
volume c), the different vascular structures overlap in the lateral direction, making it
challenging to distinguish between the skin layers. f Skin surface detectionworkflow.
The inputs were LF and HF reconstructed RSOM volumes. The output was a
polynomial surface function. The workflow consists of four building blocks: “Find
Surface Points”, “Exclude Outliers”, “Fit Surface Function” and “Calculate Feasible
Range”, that were run in iterative loops (iterations denoted by k). g–j Skin surface
detection illustrated using a representative scan with two hairs. g Division of raster
tiles for surface point detection shown on the z-MIP (see Methods; lateral dimen-
sions: 99×198 pixels (px)). h x -MIP of the reconstruction with two visible hairs. i 3D
plot of surface points (blue) and fitted surface function after the first (outer loop)
iteration (Flowchart f). Outlier voxels are indicated in red (from the two hairs above
the surface and vessels below the surface). j 3D plot of the final surface function with
fitted surface points colored by depth. No outliers needed to be excluded, due to a
narrow search range for surface points in the last (fourth) iteration.
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Fig. 2 | Qualitative and quantitative comparison of our visualization tool for
enhanced maximum intensity projection (eMIP) to conventional maximum
intensity projection (MIP) for raster-scan optoacoustic mesoscopy (RSOM)
images. a–d Comparing visualizations of an RSOM scan with tilted skin structure
along lateral directions generated by conventional MIP (a, b) and eMIP (c, d). In the
projection along x -direction generated by MIP (a), the morphology of the micro-
vasculature cannot be distinguished, because the skin surface (b) is not aligned with
the RSOM coordinate system (CSRSOM). After surface alignment using eMIP, the
resulting RSOM image projected along the x-direction (c) depicts the skin layers,
marked in the image as EP for epidermis andDR for dermis. Themaximum intensity
projection along y (d) shows a straight skin line. The mean opinion score (MOS) is
indicated in each RSOM image. e, f eMIP enhances the visualization of the scan with

strong absorbers compared to MIP (e), as eMIP (f) includes improved contrast
adjustment. gHistogram of the averaged image quality MOSs for both visualization
techniques (n = 1725 scans, each assessed by 8 experts). Mean values are indicated
with vertical lines. h Histogram showing differences in MOSs between eMIP and
MIP for 1725 individually assessed images. 23.9% of scans visualized by eMIP show
an increase of at least 0.5MOS points compared toMIP, while only 1.2% of the scans
visualized by eMIP were deemed to be 0.5 MOS point lower than MIP. i Inter- and
intra- expert agreement on perceived image quality ratings for MIP, eMIP. In black
the comparison between single raters and in red the comparison between groups of 3
raters. Error bars indicate 95% confidence intervals. Statistical analysis by right-
tailed two-sample t-test (g) and according to the tests defined in Methods (i), ns: p
>0.05, *p ≤0.05, ****p ≤0.0001.
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When images generated by MIP and eMIP were compared on a one-
to-one basis for each scan (see Methods), eMIP achieved MOSs at least 0.5
points higher thanMIP in 23.9% of the 1725 scans. In contrast, only 1.2%of
the eMIP images were rated with MOSs at least 0.5 points lower than their
corresponding MIP images (potentially due to failure in the surface detec-
tion). The one-to-one comparison is illustrated in the histogram of Fig. 2d,
which highlights the quality improvements offered by our method com-
pared to the reference, revealing systematic weaknesses in the MIP image
formation process (e.g., dark or superimposed images). These findings are
basedon the assumptions that adifference of 0.5MOSpoints corresponds to
a substantial quality improvement, likely attributed to suboptimal visuali-
zation in the lower-quality image.

Improvements in perceptual image quality assessment (IQA)
In the previous section, we used perceptual IQA, i.e., the MOS of the 8
experts, as the metric for image quality to facilitate a quantitative compar-
ison of the two visualization methods. Additionally, perceptual IQA is an
important tool for data curation, but it inherently involves a degree of
subjectivity. Therefore, achieving high consistency in ratings is essential for
meaningful results. This can be facilitated by ensuring that image quality is
straightforward to interpret by the raters or by aggregating the MOS from
multiple raters, leveraging the effect of regression toward the mean. A
common metric to measure the consistency is the (weighted) Fleiss’ kappa
for inter-expert (between experts) agreement and intra-expert (within a
single expert) agreement (see Methods).

Figure 2i illustrates the inter- and intra-expert agreement coefficient on
the images of MIP and eMIP. The figure shows the agreement coefficient

comparing single raters (shown in black) and the average agreement when
comparing the MOS of groups of three raters (shown in red). Table 1
provides an interpretation of the agreement coefficients.

As expected, intra-expert agreement is higher than inter-expert
agreement, although it remains imperfect. Additionally, the fact that
inter-expert agreement is only fair to moderate underscores the challenges
involved in assessing the image quality of RSOM scans.

However, for both visualization methods, averaging the quality scores
from just three raters significantly improves agreement, demonstrating the
positive aggregation impact of MOS on reliability.

Furthermore, while not statistically significant (p-values: 0.071 (inter),
0.38 (intra), 0.080 (groupof 3)), there is a trend suggesting that eMIP images
achieve higher agreement rates among the raters compared toMIP images.
This implies that eMIPmight facilitatemore consistent assessment of image
quality and that fewer experts are required to achieve comparable reliability.

Computational cost analysis
Both visualization methods eMIP and MIP are computational efficient,
requiring less than a second for the visualization alone (excluding loading
and saving) on our test machine (see Methods). On average, eMIP takes
0.98 s and MIP only 0.03 s. Table 2 provides a detailed breakdown of both
visualization pipelines alongside the reconstruction time for context.

Considering loading and saving image data and surface function to
disk both visualization times remain fast enough for real-time use and are
suitable for large scale clinical bath processing. The average time for the full
MIP visualization is 2.64 s, while eMIP averages 3.72 s, adding a mean
overheadof 1.08 s to the total processing time.Notably, a substantial portion
of the total time in both pipelines is spent on saving image data due to non-
optimized MATLAB routines.

While the surface detection accounts for most of the additional pro-
cessing time (0.87 s on average) it remains computationally efficient for the
given task. Moreover, the surface function can be saved and reused for
further visualizations or precomputed in advance, and even in the worst-
case, the maximum observed surface detection time remains modest
at 4.49 s.

For comparison, the mean reconstruction time for both LF recon-
struction (LFR) and HF reconstruction (HFR) is 5.11 s on a highly opti-
mized workstation using GPU-acceleration, illustrating that the overhead
introduced by eMIP to the full reconstruction and visualization pipeline is
moderate at 14% (7.75 s with MIP vs. 8.84 s with eMIP).

Discussion
In this work, we introduce a novel image visualization tool for volumetric
reconstructions, eMIP, that yields high fidelity 2D representations with

Table 1 | Interpretation of agreement coefficient κ.

κ Interpretation

≤0 Poor
agreement

0.00–-
0.20

Slight
agreement

0.20–-
0.40

Fair
agreement

0.40–-
0.60

Moderate
agreement

0.60–-
0.80

Substantial
agreement

0.80–-
1.00

Almost perfect
agreement

Table 2 | Computational times (in seconds) for individual components of the visualization process.

Mean STD Median Maximum

Both Load LFR & HFR 0.2853 0.0720 0.2828 1.6246

eMIP Surface detection 0.8652 0.2518 0.8245 4.4892

Visualization 0.1120 0.0257 0.1099 0.5248

Save 2D images 2.4603 1.3505 1.6898 8.5321

Save surface info 0.0017 0.0006 0.0016 0.0083

Total 3.7245 1.4452 2.9301 14.8880

MIP Visualization 0.0309 0.0084 0.0298 0.1520

Save 2D images 2.3204 1.3569 1.5489 7.8309

Total 2.6366 1.3693 1.8663 9.5377

Reconstruction LFR & HFR 5.1123 0.7576 5.2151 5.7994

The table provides adetailed breakdownof runtime for each step inMIP&eMIP. LoadLFR&HFR times are sharedacross both techniques. For eMIP, thebreakdown includes additionally surfacedetection,
visualization (comprising surface correction & dynamic contrast adjustment), and saving images and surface function to disk. For MIP, the breakdown includes visualization and saving the images to disk.
The reconstruction timewas collected separately on an optimizedworkstation without further breakdown. It includes loading, pre-processing (e.g., bandpass filter), 3D image reconstruction and saving to
disk. For all durations we show the mean, standard deviation (std), median and maximum over all 1725 scans.
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respect to the volume. Using a large dataset of RSOM scans, we also
demonstrate that, compared to the prevailing visualization method (MIP),
eMIP significantly improves the perceived quality of RSOM images due to
its ability to compensate for non-ideal positioningof theultrasounddetector
when scanning and its improved contrast. Based on this result, eMIP could
be included as a post-processing task for medical applications based on
projecting 3D volumes into 2D images1–5, as it facilitates image
interpretation.

The ability of eMIP to automatically detect and flatten the skin surface
on 3D scans acquired with imprecisely positioned ultrasound detectors
improves the visualization of the 2D projected images. Detecting the skin
boundary in RSOM scans and flattening it (i.e., shifting slices of the 3D
volume such that the detected skin boundary aligns to a uniform reference
level parallel to the xy plane) have been used in previous studies as a pre-
processing step since the skin surface can act as an anchor for subsequent
skin segmentation tasks12,17,23. However, the employed algorithm for the
alignment had the original purpose of correctingmotion and its capacity to
flatten the data has not been evaluated in a large dataset, conversely to what
eMIP has demonstrated in this work. eMIP can thus be applied as a data
homogenization technique previous to data-driven analysis methods for
RSOMand othermedical imagemodalities (such as CT angiography24) and
processes (such as registration of non-static24 images). In this context, the
standardized alignment and enhanced visibility achieved with eMIP may
support posterior analysis of RSOM clinical data by improving the detect-
ability of anatomical biomarkers – such as the epidermal layer or cutaneous
microvasculature – and reducing variability across measurements. These
improvements could benefit both manual and automated pipelines, parti-
cularly for vascular biomarker extraction or longitudinal studies, advancing
the development of clinical applications of RSOM. For instance, the authors
believe that artificial intelligence (AI) applications could benefit fromeMIP-
rendered images, reducing the amount of data required to train when all the
images show the skin boundary at the same depths and the relevant image
content is better visualized (i.e., contrast enhanced).

A current limitation of eMIP, however, is that the hyperparameters
(Supplementary Tables 2–5) of the surface detection algorithm were opti-
mizedona limited amount of data (a subset of the dataset of 1725 scans) and
conditions (healthy volunteers and patients with cardiovascular diseases or
diabetes only). While the set of parameters yielded a consistent quality
improvement on the whole dataset of 1725 scans (as demonstrated in this
manuscript and supported by the confounder analysis), our surface detec-
tionalgorithmmightneed adjustments inother conditions, such as psoriatic
skin, where thickened epidermis and sometimes elongated capillary loops11

may alter the detection conditions.A reproducibility study on an even larger
dataset with more disease conditions, possibly with extended hyperpara-
meter tuning, might further improve eMIP.

To facilitate the adaptation and utilization of eMIP, we implemented
eMIP in a toolbox comprising its building blocks (e.g., surface detection and
correction), along with detailed documentation. Notably, eMIP can be
deactivated or adjusted depending on the clinical use case. For example, in
conditions where natural curvature of the skin is diagnostically meaningful
– such as in melanoma or edema – flattening might obscure relevant fea-
tures. In such scenarios, it is possible to either skip the correction step or
apply a more conservative flattening strategy (e.g., based on a linear poly-
nomial fit) to remove global tilts while preserving local deformations. To
support flexible adaptation, the toolbox exposes a simple sensitivity para-
meter that governs the stringency of surface point detection, alongside to
more advancedhyperparameter such as thresholds for outlier exclusion and
the polynomial fitting degree. This design enables users to re-tune the
surfacedetection algorithm for atypical skinmorphologies ordatawhere the
default configuration fails to generalize.Moreover, the toolbox allows for the
export of both the raw and correctedMIPs and could be extended to include
visual overlays of the deformation field to ensure transparency and support
subsequent analysis.

Additionally, the shift towards higher perceived quality of eMIP-
generated images in comparison with MIP-generated images hints how an

improper visualization biases data quality assessment25,26. eMIP reduced
suchvisualizationbias thanks to its increasedfidelitywith the corresponding
volumes, which could prevent experts from erroneously discarding low-
quality scans even though the underlying recorded data is of high-quality.
Therefore, with this work we demonstrated that eMIP narrows the assess-
ment gap between actual data quality and visual 2D image quality.

The extensive dataset of RSOM scans (N = 1725) that we collected to
validate our method contains annotations by eight experts with perceived
quality scores for everyMIP- or eMIP- rendered 2D image. The use ofMOS
addresses additionally a typical drawback of subjective image quality
assessment, by reducing the variability of the individual quality labels25,27.
Analogous datasets have previously been presented for othermodalities28–30,
but not for RSOM. As such, the collection of this RSOM dataset with
subjective quality labels is of great importance for the development of fur-
ther data-driven RSOMapplications or to validate automated, cost-efficient
quality assessment methods. These may include mathematically defined
objective quality metrics31, as well as machine learning-based approaches32,
which can complement or eventually replace subjective expert scoring in
large-scale studies.

Thepresented eMIPmethodcouldbe incorporated aspart of the image
formation step in the RSOM (and othermedical imagemodalities) pipeline,
in order to ensure higher image quality in the 2D visualization of a volu-
metric reconstruction. Incorporating eMIP into the pipeline will benefit
both, data analysts and clinicians. While the former could improve the
performance of their data-driven algorithms due to a standardized input
data; the latter could interpret more confidently medical readings due to
anatomically more accurate images.

Even though a higher image quality is preferred for accurate
diagnosis25, it is worth noting that our visualization method was
evaluated in terms of visual quality rather than in terms of diagnostic
performance. Incorporating assessments of clinical end-users, as
done in33, could provide valuable insights into the clinical significance
of the eMIP-generated images and help quantify the impact of image
distortions on downstream diagnostic metrics, such as disease clas-
sification or vessel quantification34.

Alternatively to eMIP, volume rendering algorithms and emerging
virtual reality visualization methods have been shown to preserve better
than maximum intensity projections the 3D relationships of the vessel
networks in CT angiographs35–37, so a possible line of investigation could
study if such improvement is also noticeable for RSOM images.

In summary, we present a visualization tool for 3D medical
reconstructed scans, eMIP, and validate it with RSOM scans, showing
an improved quality and higher reliability of rendered 2D images,
that can be used as a standardization method for subsequent analysis.
The integration of eMIP into RSOM could accelerate the widespread
clinical adoption of the modality and spur the development of new
RSOM applications in the clinic.

Methods
Assembly of the RSOM dataset for benchmarking eMIP
against MIP
The data used for this manuscript were collected as part of three
clinical studies which investigated the effects of diabetes and cardi-
ovascular diseases on skin microvasculature. The studies were run by
the University Hospital Klinikum rechts der Isar from Technical
University of Munich and Tübingen University Hospital (Germany).
Measurements were performed with two RSOM Explorer C50®
research systems (iThera Medical GmbH, Germany). In total, 1725
RSOM scans were collected from 236 participants (N = 174 subjects
recruited in Munich and N = 62 subjects in Tübingen). Scans were
taken from the inner forearm during cuff occlusion and release
(between 7 and 13 scans per participant) and from the pretibial
region of the lower leg (between 1 and 3 scans per participant).

The recruited participants in University Hospital Klinikum rechts der
Isar fromTechnical University ofMunich38 were asked to avoid exercise for

https://doi.org/10.1038/s44303-025-00112-z Article

npj Imaging |            (2025) 3:49 6

www.nature.com/npjimaging


24 h and fast for 6 h prior to the scan. The day of the examination, they were
first sitting in a relaxed position for 15min before the actual examination
began. The scan took place in a quiet, semi-dark examination room with
normal room temperature (≈23 °C). The recruited participants inTübingen
University Hospital were also asked to avoid exercise for 24 h prior to the
examination but theywere not in fasting state.On themeasurement day, the
participants were placed in a quiet room at normal room temperature
(≈23 °C), and after they laid for 15min until the beginning of the mea-
surement, they were scanned in lying position.

Raw RSOM data consists of temporal pressure signals (also known
as A-lines) that are generated after illuminating tissue with a mono-
chromatic pulsed laser by means of two customized fiber optic cables
(532 nm, 1000 Hz pulse repetition rate, 80 µJ pulse energy). The A-lines
were recorded by a single spherically focused LiNbO3 ultrasound
transducer (50MHz central frequency, 10–99MHz bandwidth, 4 mm
focal distance) with a sampling frequency of 500MHz. The device was
positioned with the help of mechanical stages in steps of 0.020 mm,
following a raster trajectory inside a field of view of 4 mm× 2mm. A
schematic representation of the RSOM device on a skin section is shown
in Fig. 1a. The sinogram was then produced by stacking signals over time
in the spatial scanning dimensions. Sinograms are made up of multiple
B-planes, which consist of all the signals recorded along a single line
(fast-scanning axis) during the raster scan. The sinograms were recon-
structed using a delay-and-sum algorithm presented in ref. 6, which
produced volumetric reconstructions of the dermal microvasculature
with a voxel size of 20 µm × 20 µm× 4 µm. The scanning process deter-
mines the cartesian coordinate system of the RSOM scan, called CSRSOM,
in which y (fast-scanning direction) and x (slow-scanning direction) are
the lateral coordinates defined by the scanning path and z is the depth,
which is perpendicular to the scanning plane and parallel to orientation
of the ultrasound detector (see Fig. 1a). In this work a 3D slice refers to a
cross-sectional volume with one voxel thickness perpendicular to one of
the three axes (x; y; z) at a certain position.

Frequency band equalization
RSOM’s capability of multi-scale imaging is exploited by FBE. FBE
prevents small structures, which generate high frequency signals with
lower intensity, from being obscured by the higher intensity signals
of larger vessels. Therefore, RSOM sinograms are separated into two
different frequency bands (LF: 10–40 MHz and HF: 40–99 MHz)
using band-pass filters and reconstructed as two independent scans.
Both the LFR and the HFR are then projected along the x-, y- or
z-axis and merged into composite 2D images with the LFR and HFR
marked in different color scales. The projections are done by
applying the two visualization approaches, MIP or eMIP, that we aim
to compare.

To ensure visual coherence and enhance feature visibility, the contrast
of the color channels are matched to each other and optimized using
techniques specific to the projection method and detailed under the fol-
lowing subheadings:
1. Alpha optimization for MIP,
2. Dynamic contrast optimization for eMIP.

Alpha optimization for MIP
According to the FBE method, as published in ref. 11 (an advancement of
refs. 39–41), the resulting 2D images imHF and imLF from projecting the
LFR and HFR, respectively, along the desired axis, are equalized by
weighting imHF with α� as follows,

im�
HF ¼ α��imHF; ð1Þ

where α� is determined by solving the following optimization problem,

α� ¼ argmin
α

jjimLF � α � imHF jj: ð2Þ

Then, im�
HF and imLF are fused into an RGB image using linear scaling

(range 0 to 1) between the joint minimum and maximum value, i.e.,

imgreen ¼
im�

HF � immin

immax � immin
and imred ¼

im�
LF � immin

immax � immin
ð3Þ

with immin ¼ minð½im�
HF ; imLF �Þ and immax ¼ max im�

HF ; imLF

� �� �
, where

imgreen is assigned to the green channel and imred to the red channel.Usually,
for improved visibility, the contrast is adjusted by saturating lower and
higher values according to an upper and lower threshold39 (in
refs. 11,12,19–22 the saturation is not explicitly stated, but can be visually
obtained). Since manual contrast adjustments are impractical for large
datasets, and the objective is to achieve automated and standardized
visualization, we used the default saturation values of 0.06 (lower contrast
threshold) and 0.35 (upper contrast threshold) as set by our research facility.

Dynamic contrast adjustment for eMIP
In order to enhance the representation of the skin microvasculature in the
eMIPs, we implemented a dynamic contrast adjustment in our visualization
method (eMIP). Unlike alpha optimization for MIP, the dynamic contrast
adjustment saturates the images separately in the red and green color
channel. For this reason, twoupper thresholds thþHF and th

þ
LF are determined

for the two frequency-band-filtered reconstructions LFR and HFR,
respectively. The upper thresholds are calculated by

thþLF¼ 1:25 � q0:95 z�MIPLF

� �
; ð4Þ

thþHF¼ 1:25 � q0:95 z�MIPHF

� �
; ð5Þ

where q0:95 is the 95
th percentile function and z�MIPLF and z�MIPHF are

the maximum intensity projections in z-direction of LF and HF, respec-
tively. Percentiles are used instead of absolutemaxima to avoid the influence
of outliers caused by artifacts or isolated strong absorbers. Calculating the
thresholds from the z-MIPs rather than the full 3D volumes increases
robustness, as the z-MIPs are less affected by background noise and
reconstruction sparsity. This is particularly important when the total
reconstruction depth is large, where deeper regions containmany near-zero
voxels due to signal attenuation and fluence decay. A detailed analysis of the
robustness of the percentile choice is provided in Supplementary Note 2,
Supplementary Fig. 2 and Supplementary Table 6.

Next, we apply eMIP along the chosen axis (x, y, or z) for LFR andHFR
and term the received 2D images imHF and imLF , respectively. Subse-
quently, the images are zero clipped, capped by their corresponding upper
threshold and linearly mapped to the range from 0 (zero values) to 1
(maximum values), i.e.,

imgreen ¼
im�

HF

thþHF
and imred ¼

im�
LF

thþLF
ð6Þ

with im�
HF ¼ max min imHF ; th

þ
HF

� �
; 0

� �
and im�

LF ¼
max min imLF ; th

þ
LF

� �
; 0

� �
: Finally, the RGB image is composed by assign-

ing imred to the red channel and imgreen to the green channel.

Conventional maximum intensity projection (MIP)
We implemented MIP as the reference visualization method for rendering
3D slices into 2D images. This technique selects the highest intensity value
of all 3D slices along each projection line through the reconstructed
volume to create the 2D images. As there are three main orthogonal
directions that can be defined by the RSOM coordinate system CSRSOM
when scanning, three 2D images can be rendered from the 3D volume; the
x-MIP is produced by a projection along the x-axis (slow-scanning
direction), the y-MIP by a projection along the y-axis (fast-scanning
direction), and the z-MIP by a projection along the z-axis (depth).
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Enhanced maximum intensity projection (eMIP)
Our eMIP method includes a skin surface alignment algorithm that shifts
z-columns (lines of single voxels at a fixed xy position stacked along the
z-axis in the 3D volumetric array) of the volumetric reconstruction in order
toproject the skinboundary into a 3Dslice parallel to the lateral directions at
a predefined depth with respect to the CSRSOM.

The skin surface is aligned using two sub-algorithms: surface detection
and surface correction algorithms. The surface detection algorithm deter-
mines a surface function that approximates the skin surfacewithin theHFR
and LFR. Then, the surface correction algorithm transforms LFR and HFR
according to the surface function so that the surface is at a uniform level
within.

Once the surface correction is completed, maximum intensities are
projected analogously to theMIPprocess. Theprojections along the x; y and
z axes are termed x-eMIP, y-eMIP and z-eMIP, respectively.

Surface correction
We describe the LFR and HFR by their voxel intensity values Vijk, with

i; j; k
� � 2 Dxyz :¼ Dx ×Dy ×Dz :¼ 1; . . . ; nx

� �
× 1; . . . ; ny
n o

× 1; . . . ; nz
� �

representing the spatial positionof the voxelwithin the volume,wherenx ,ny
and nz are number of voxels along the respective dimension. Furthermore,
we name the vector ½Vij1; . . . ;Vijnz

� the z-column ði; jÞ.
The surface correction algorithm first evaluates the surface function

ðx; yÞ7!sfit x; y
� �

from the surface detection algorithm at eachpoint i; j
� � 2

Dxy :¼ Dx ×Dy and projects the results to the nearest value in Dz , i.e.,

sij ¼ argmin
k2Dz

jsfitði; jÞ � kj: ð7Þ

Then, each z-column inLFRandHFR is shifted, so that the entriesVijsij
are aligned at the same level, called the zero-level. The shifted reconstruc-
tions are assembled such that they preserve their size, and the zero level is
placed at k = 100 (equivalent to a depth of 400 µm).Valueswhich are shifted
out of the volume limits are cut off, and missing values are padded
with zeros.

Surface detection
The surface detection algorithm utilizes the least squares approach to esti-
mate the best fitting polynomial to describe the skin surface. Typically, the
skin surface is tiltedwith respect to the 3Dvolume, and in some cases curved
due to heterogeneous pressure from the attached scanning device. A tilt
(rotationof the surfacenormal against the z-driection) canbe expressed by a
simple linear function and our experience suggests that the curvature of the
surface is well approximated by a 2D polynomial of degree two or three.
Moreover, interpolating or fitting high-degree polynomials can be prone to
numerical instability and the Runge phenomenon, especially if not
approached with care42,43. Consequently, we limited the polynomial degree
to a maximum of 4.

The iterative surface detection process comprised of four general
building blocks (simplified flowchart in Fig. 1 and detailed flowchart in
Supplementary Fig. 3). Given the 3D reconstructed volumes LFR andHFR,
the algorithm identifies the first voxels in the z-direction that exceed a
certain intensity level (referred to as surface points) and then fits a poly-
nomial function that accurately approximates the depth of the surface
points given their x and y position. The former subroutine forms the “Find
surface points” block, and the latter, the “Fit Surface Function” block. To
avoid misidentification of the signal of hairs, artifacts, noise, or other high
absorbing structures (representatively visualized in Fig. 1g, h) as surface
points, we added twomore sub-routines (blocks) that remove the influence
of artifacts (Fig. 1i, j) and ensure uniform and smooth representation of the
skin surface (“Exclude Outliers” and “Calculate Feasible Range”, respec-
tively). By means of outer and inner iterative loops, we excluded such
outliers, narrowed the search range, selected more suitable surface points

and updated the polynomial function until we obtained a final surface
function.

The building blocks of our skin surface detection process required the
tuning of hyperparameters as explained below. The hyperparameters used
are shown in SupplementaryTables 2–5 and theseweremanually optimized
over several iterations on a subset of 139 images, of which 69were randomly
selected and 70 were handpicked based on complexity to represent a broad
range of possible cases (e.g., scans with noise, reflections, hairs or weak
signal). The five building blocks are:
1. Find Surface Points,
2. Fit Surface Function,
3. Outlier Exclusion,
4. Calculate Feasible Range,
5. Final Surface Function.

This block “Find Surface Points” searches for points on the skin sur-
face. A surface point ui ¼ xi; yi; zi

� �
is given by the coordinates of a voxel

Vxiyizi
(see Fig. 1j, k). The surface points, in terms of z-column coordinates,

are selected separately for LFR and HFR. The union of all surface points
(from LFR and HFR) constitutes set S.

In each z-column xi; yi
� �

of LFR and HFR, we select at most one
surface point ui ¼ xi; yi; zi

� �
; for which the entry Vxiyiz

is greater or equal
than a threshold tht , such that

zi ¼ inffz 2 ρðxi; yiÞ : Vxiyiz
≥ tht ; xi; yi

� � 2 Dxyjtg; ð8Þ

where ρ is the search range (see building block 4). If no entry fulfils the
criteria ðzi ¼ 1Þ, the surface point ui will be omitted.

The thresholds tht are derived locally on a raster ofDxy (see Fig. 1g) to
ensure that a sufficient number of points are selected in low-intensity voxel
regions while reducing noise and artifact detection in high-intensity areas.
Additionally, the approach of local thresholds guarantees an adequate
number of surface points near edges and corners, which is crucial for
accurately fitting the surface polynomial. The sub-domains Dxyjt of the
raster (referred to as raster tiles) are defined for t ¼ 1; . . . ; 16 by

Dxyjt ¼ xi; yi
� � 2 Dxy : a t�1½ �4þ1 < xi ≤ a t�1½ �4þ2; bdt=4e < yi ≤ bdt=4eþ1

n o
ð9Þ

with aj ¼ djnx þ 1=2
j k

, bj ¼ djny þ 1=2
j k

for d ¼ 0; 0:15; 0:5;½
0:85; 1� and t½ �4 :¼ t ðmod 4Þ. The threshold tht is calculated on the
respective raster tile Dxyjt ; with

tht ¼ max
τ

sensitivity
qαðz�MIPρ;tÞ;

0:15 � τ
sensitivity

qαrelaxed ðz�MIPρÞ
� 	

;

ð10Þ

where qαð�Þ is the α-quantile function, z�MIPρ the maximum intensity
projection along the z-direction restricted to the surface range ρ; and
z�MIPρ;t is additionally restricted to tile Dxyjt . The second term of the
maximum imposes a (global) lower limit, reducing the detection of pure
noise in areas with no or very weak signal. The relaxation values 0.15 and
αrelaxed ¼ α� 1

3 1� αð Þ were chosen empirically, where slightly higher or
lower values have been demonstrated to produce similar results.

Multiplier τ
sensitivity and quantile α are fine-tuned according to Supple-

mentary Tables 2 and 3, where in the 4th iteration quantile α is determined
adaptively according to the noise level immediately above the estimated
surface. First, we select the noise range of 41 voxels (empirically shown to be
robust) around the top boundary of the surface range ρ, i.e.,

ρnoise ¼ ½ρtop � 20; ρtop þ 20�: ð11Þ
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Then, we calculate the target threshold thtarget by:

thnoise ¼ q0:95 z�MIPnoise
� �

; ð12Þ

thmin =max ¼
1

sensitivity
q
αmin =max

z�MIPð Þ; ð13Þ

thtarget ¼ min ðmaxðthnoise; thminÞ; thmaxÞ; ð14Þ

where z�MIPnoise is the z-MIP restricted to the noise range ρnoise. The
adapted alpha αadpt is chosen such that the following two equations are
fulfilled:

thtarget ¼ 1
sensitivity qαrelaxed ðz�MIPÞ;

αrelaxed ¼ αadpt � 1
3 1� αadpt


 �
:

8<
: ð15Þ

With the adaptive alpha, the algorithmfindsmore surface points in the
selection process which are closer to the actual surface without falsely taking
noise into account.

The second building block “Fit Surface Function” fits a function sfit to
the surface points S or, if available, Sinc (defined in building block 3). The
function sfit referred to as surface function is modeled as a polynomial of
degree n;mð Þ, i.e.,

sfit x; y; n;m
� � ¼ X

ði;kÞ2I
c�ikx

iyk; ð16Þ

with I ¼ f i; kð Þ 2 N2 : i≤ n; k≤m; iþ k≤ maxðn;mÞg. In Fig. 1j, k we
illustrate the process. The coefficients c� ¼ c�00; c

�
10; . . . ; c

�
0m

� �T
are either

determined by solving the linear least square problem (called “Polyfit”), or
the RANSAC algorithm44, which is known to be robust against outliers. At
the first few iterations a linear (degree (1,1)) polynomial model is chosen to
robustly obtain a rough estimate of the surface location. In later iterations,
the polynomial degree is selected dynamically.

In the Polyfit algorithm, the coefficients cnm for varying polynomial
degrees ðn;mÞ are determined on a training set (95% of Sinc) by:

cnm ¼ argmin
c2RjIj

1 x1s y
0
s � � � x01y

m
1

..

. ..
. . .

. ..
.

1 x1s y
0
s � � � x0s y

m
s

2
664

3
775c�

z1

..

.

zs

2
664

3
775

��������

��������

��������

��������
2

: ð17Þ

Thepolynomialdegree n�;m�ð Þwithminimal costwill be selected.The
cost is evaluated on the test set Stest by:

costnm ¼ pðn;mÞ �
X
ui2Stest

sfit xi; yi; n;m
� �� zi

� �2
ð18Þ

with a penalty factor p n;mð Þ ¼ 1:01 m�1ð Þ2þ n�1ð Þ2 on the polynomial degree
ðn;mÞ. The penalty is introduced to favor low polynomial degrees, because
they are more robust (e.g., Runge phenomenon). The coefficients c� of the
final function sfit with polynomial degree n�;m�ð Þ are obtained by fitting
the entire set Sinc once more.

The RANSAC algorithm is only used to fit linear functions using a
sample size of 10 and amaximumdistance of 30 for inlier points (for details
see ref. 44).

The order of application and hyperparameter are clarified in Supple-
mentary Table 5.

The block “Outlier Exclusion” assembles a subset of surface points
Sinc � Swhich excludeoutliers (illustratedbyblue and redpoints inFig. 1i, j,
respectively). Here, we define outliers to be surface points which exceed a
certain distance from sfit with the exact definition given in the following. For

notational purposes, we identify the previous set Sinc (or S after an iteration
of the “Find Surface Points” building block) as Soldinc . First, we calculate the

residuals rj foruj ¼ xj; yj; zj

 �

2 Soldinc ; andassemble these residuals into the

vector r ¼ r1; . . . ; rs
� �

; whereby

rj ¼ sfit xj; yj


 �
� zj: ð19Þ

Thenwederive the standarddeviation σ ¼ std rð Þ; and the local second
moments γ2t ¼ E r2t

� �
;where rt ¼ ½rt1 ; . . . ; rts � is assembled by all residuals

rt i corresponding to raster tile t, i.e., xti ; yti


 �
2 Dxyjt . Globally, we define

γðx; yÞ by γj x;yð Þ2Dxyjt
¼ jγt j. Introducing γ ensures enough surface points in

Sinc in each raster tile. Next, we introduce the thresholds

htopðx; yÞ ¼ min max σtop � σ; γtop � γðx; yÞ

 �

; habs

 �

; ð20Þ

hbotðx; yÞ ¼ max σbot � σ; γbot � γðx; yÞ
� �

; ð21Þ

where the distance habs is introduced to consistently remove reflections. The
hyperparameter habs, σtop, σbot ; γtop and γbot are defined for each iteration in
SupplementaryTable 5. Surfacepointswhicharehtop aboveorhbot below sfit
(loosely speaking a factor of σ or γ) will be excluded. Hence,

Sinc ¼ ui ¼ xi; yi; zi
� � 2 S : �hbot xi; yi

� �
< sfit xi; yi

� �� zj < htop xi; yi
� �n o

:

ð22Þ

The fourth building block “Calculate Feasible Range” ensures that the
surface points for each z-column are inside a range defined by the surface
function derived in the previous iteration (or outer loop). The surface range
ρ x; y
� � ¼ ½ρbot x; y

� �
; ρtop x; y

� �� defines the interval along the z-column
ðx; yÞ within which surface points can be selected. The limits ρbot x; y

� �
andρtop x; y

� �
are determined by

ρbot x; y
� � ¼ sfit x; y

� �� θbotand ρtop ¼ sfit x; y
� �þ θtop; ð23Þ

where θbot and θtop are defined in Supplementary Table 2.
In the last building block “Final Surface Function” a small offset is

added to the function sfit, so that the estimated surface is abovemost surface
points. The offset is calculated by

offset ¼ r þ 1
5
sþ 3; ð24Þ

where r is the 80th percentile and s is the standard deviation of the
residuals (see Eq. (19)). The offset r ensures that the estimated surface is on
top of at least 80% of the detected surface points and the remaining 20% are
estimated by the standard deviation s plus an additional fixed offset of 3
voxels to eliminate confounding effects from possible outliers.

Computational cost analysis
For the computational cost analysis, we visualized all 1725 scans using both
eMIPandMIP inMATLAB2025aonaMacBookPro equippedwith anApple
M4 Pro chip featuring a 20-core CPU and 48 GB of unified memory. We
recorded the loading time, the time required to run the surface detection
algorithm, the timeneeded forvisualization(foreMIPwithout surfacedetection
but with surface correction), and the time to save the resulting images to disk.

Reconstructions were performed on a high-performance workstation
running Windows 10 Pro, equipped with an AMD Ryzen Threadripper
3970 × 32-core processor, 256 GB of RAM, and an NVIDIA GeForce RTX
3090 GPU. The system is built on a Gigabyte TRX40 DESIGNARE
motherboard and is optimized for compute-intensive, parallel processing
tasks. The reconstructions algorithm6 was executed in MATLAB 2024b
using precomputed sensitivity fields and CUDA-based GPU
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implementation for acceleration.We recorded the total reconstruction time
for all scans, including raw data loading from SSD, reconstruction of HFR
and LFR volumes, and saving to disk.

For all recorded durations, we computed the mean, median, standard
deviation, and maximum values.

Perceptual image quality assessment by experts
The quantification in terms of perceived image quality is the metric
employed in this work to validate eMIP against the conventional visuali-
zationmethod forRSOMimages. Perceptual (or subjective) IQAis basedon
the opinion of qualified observers to evaluate the appearance of an image
and its suitability for a specific purpose and it is considered in literature the
gold standard method, due to its reliability45,46. Eight optoacoustic imaging
experts quantified the visual quality of 1725 RSOM reconstructed scans,
with each scan rated at least twice, once after visualizationwithMIP and the
conventional contrast from FBE and once after visualization with eMIP
usingFBEwithourdynamic contrast adjustment.The raterswereblinded to
the visualization method and the images were presented individually in an
independently randomized order for each rater using a unique seed, pre-
venting any systematic bias during the scoring process. To facilitate quality
evaluation by the experts, we implemented a graphical user interface (GUI)
(see Supplementary Fig. 4), that shows theMIPs along the three dimensions
of the reconstructed volumes for each of the scans. The experts were then
asked to rate the visualization in one of four categories, bad quality (1),
medium quality (2), good quality (3) and perfect quality (4), according to
their opinion of the usability of the data in posterior data analysis. It was
possible to postpone the evaluation of an image for later evaluation or to
exclude an image completely. The scans were randomly shuffled for each
participant, including 100 repeated scans for each visualization method for
quantificationof intra-expert consistency.Thefinal imagequality ratingwas
calculated by averaging the scores of all eight raters (MOS). When a scan
received two different ratings from the same rater (for the 100 repeated
scans), the rater’s score for the scan was taken to be the average of the two
scores (before calculating the MOS).

Perceived quality distribution & significance of MOS differences
between MIP and eMIP
The distribution of theMOS is presented by a histogram (Fig. 2g). TheMOS
values range from 1 (poor quality) to 4 (excellent quality). The scores are
grouped into bins with a width of 0.125, and the height of each bin repre-
sents the percentage of scanswithin that range.MOSvalues that fall on a bin
boundary are included in the bin to the left.

To evaluate the statistical significance of the differences in perceived
image quality, we performed two tests:
1. A two-sided two-sample t-test to assess whether the mean MOS for

eMIPwas significantly greater than themeanMOS forMIP. However,
because of discrete data points, the assumption of normality may not
be valid.

2. A two-sided Wilcoxon signed-rank test to determine the significance
that themedianMOSof eMIP is greater than themedianMOSofMIP.

For both tests we set the significance level to α = 0.01%. Addi-
tionally, we reported the confidence interval (CI) for the mean MOS
differences corresponding to this significance level. To derive the CI
for the median differences to the significance level α we used
bootstrapping.

Comparison of pairs of images generated by MIP and eMIP
To compare eMIP andMIP images rendered from the sameRSOMscanwe
calculated the differences di between the MOS values for all 1725 pairs of
images (imi;eMIP & imi;MIP) as follows:

di ¼ MOS scani;eMIP

� ��MOS scani;MIP

� �
: ð25Þ

Then, we represented the distribution of all differences di in a histo-
gram (Fig. 2i) centered at zero with a bin width of 1/3. A substantial dif-
ference was defined as jdij≥ 0:5.

Inter- and intra-expert agreement
The inter-expert agreement, the degree towhichdifferent experts agreewith
each other when rating the same image, and intra-expert agreement, the
degree to which the same expert rates the same image at different times, for
bothMIP and eMIP was quantified by calculating the generalized weighted
Fleiss’ kappa coefficient (κ̂inter;MIP κ̂inter;eMIP and κ̂intra;MIP , κ̂intra;eMIP)

47–51 for
multiple raters. A linear weighting matrix was used, with weights

wij ¼
ji� jj
3

; ð26Þ

where i; j are the ratings from 1 to 4. To quantify intra-expert agree-
ment (κ̂intra), the 100 scans that were assessed twice by each rater were used
to calculate the weighted Fleiss’ kappa coefficients, and the mean value was
reported. The inter- and intra-expert agreement gain are defined by

κ̂inter;gain ¼ κ̂inter;eMIP � κ̂inter;MIP; ð27Þ

κ̂intra;gain ¼ κ̂intra;eMIP � κ̂intra;MIP: ð28Þ
By definition, κ ranges from −1 and 1, where κ = 0 is the agreement

expected by chance. A κ value between 0 and 1 represents levels of agree-
ment from slight to perfect (κ = 1). While there is some debate on how to
interpret values between 0 and 1, we present the benchmark proposed in
ref. 52 in Table 1.

The standard errors (SE) of the agreement coefficients κ̂ were derived
fromthe square root of theunconditional varianceV, which is the sumof the
variancesVim (random selection of images) andVr (sampling of raters), i.e.,
V ¼ Vr þ Vim

49.While there exists a closed formula to estimateVim
49,50,Vr

was estimated by the delete-one Jackknife variance estimator (inter-expert
agreement) and the usual unbiased variance estimator divided by 8 (intra-
expert agreement).

The variance of the inter-expert agreement gain κ̂inter;gain ¼
κ̂inter;eMIP � κ̂inter;MIP was estimated by

vinter;gain ¼ vr;inter;gain þ vim;inter;MIP þ vim;inter;eMIP; ð29Þ

where vr;inter;gain was derived by the delete-one Jackknife variance
estimator. Furthermore,

vintra;gain ¼ vr;intra;gain þ vim;intra;MIP þ vim;intra;eMIP; ð30Þ

and vr;intra;gainwas estimatedby variance estimator for thepaired kappa
differences of each rater (usual unbiased variance estimator).

The limits of the 95% CI are derived by

Lupper=lower ¼ κ̂± ð1:96 � SEÞ: ð31Þ

We analyzed the agreement rate of the MOS of groups of 3 raters. For
this we created all possible combinations of groups of three raters and
calculated their MOS for each scan. Then we calculated the weighted Fleiss’
kappa between all pairs of two groups with distinct elements (i.e., all dif-
ferent raters) and reported themean kappa κ̂g3. The unconditional variance
is estimated by

vg3 ¼ vr;g3 þ vim;g3; ð32Þ

where vim;g3 ¼
PP
i
vim;g3;i with vim;g3;i being the variance estimators for the

random selection of the images for all valid group pairs

https://doi.org/10.1038/s44303-025-00112-z Article

npj Imaging |            (2025) 3:49 10

www.nature.com/npjimaging


i ¼ 1; . . . ; P ¼ 8
2


 �
6
3


 �
¼ 560. The variance vr;g3 was estimated by the

delete-two Jackknife variance estimator53. For this allQ ¼ 8
2


 �
combina-

tions of six experts were built and for each of these sets themean kappa κ̂l of

all
6
3


 �
pairs of two groups with distinct elements was calculated. The

variance estimation of vr;g3 is then derived by

vr;g3 ¼
8� 2
2 � 8

XQ
l¼1

κ̂l � κ̂g3


 �2
: ð33Þ

The variance of the agreement gain κ̂g3;gain ¼ κ̂g3;eMIP � κ̂g3;MIP was
estimated by

vg3;gain ¼ vr;g3;gain þ vim;g3;MIP þ vim;g3;eMIP; ð34Þ

where vr;inter;gain was derived by the delete-two Jackknife variance estimator.
The hypothesis tests shown in Fig. 2i are defined as follows with sig-

nificance level α = 5%:
• Test 1 (κ̂g3 > κ̂inter): The p-value of κ̂inter;gain > 0 is determined by

p ¼ 1�Φ
κ̂g3 � κ̂interffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vg3 þ vinter

p
 !

; ð35Þ

where Φ is the cumulative distribution function of the normal
distribution.

• Test 2 (κ̂inter;gain > 0): The p-value of κ̂inter;gain > 0 is determined by

p ¼ 1�Φ
κ̂inter;gainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffivinter;gain
p

 !
: ð36Þ

• Test 3 (κ̂intra;gain > 0): analogous to Test 2.
• Test 4 (κ̂g3;gain > 0): analogous to Test 2.
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