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ABSTRACT

Inflation in genome-wide association studies (GWAS) summary statistics represents a major challenge, for which correction
methods have been developed. These include the genomic control (GC) method, which uses the A-value to correct summary
statistics, and the linkage disequilibrium score regression (LDSR) method, which uses the LDSR intercept. By using type 2
diabetes (T2D) as an exemplar, we explore factors influencing A-values and the impact of these corrections on association
signals. We find that larger sample sizes increase A-values due to increased captured polygenicity, while including lower
frequency variants decreases A-values due to reduced power. Comparing T2D genetic associations described in overlapping
GWAS meta-analyses of increasing sample size, we find that GC correction reduces the false positive rate and leads to the loss of
robust associations. In one of the largest meta-analysis, GC correction results in 39.7% loss of independent loci, substantially
reducing the number of detected associations. In comparison, the LDSR intercept correction leads to a loss of up to 25.2% of the
independent loci, being therefore less conservative than the GC correction. We conclude that in large, well-powered GWAS
meta-analysis of polygenic traits, both GC and LDSR intercept correction leads to power loss, highlighting the need for
improved genomic inflation correction methods.
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1 | Introduction

The genetic architecture of polygenic diseases is complex, and
underpinned by the contribution of multiple variants of
varying frequency and effect size (Boyle et al. 2017). Genome-
wide association studies (GWAS) have been successful in
identifying associations between genomic loci and complex
traits (Sollis et al. 2022). The power of these association studies
has been further enhanced by meta-analyses, which combine
association summary statistics from multiple GWAS and
therefore increase sample size and statistical power. When
conducting a GWAS, a key consideration is to differentiate
between true associations and false positives due to an infla-
tion of the test statistics, which could arise from systematic
bias. Such bias can be due to a variety of factors that, for
example, contribute to population stratification, including
differences in allele frequencies and linkage disequilibrium
(LD) structure across populations, as well as cryptic related-
ness between the participants (Voight and Pritchard 2005;
Price et al. 2010). These biases are usually corrected by
including principal components capturing population stratifi-
cation as covariates, and/or by using mixed models to account
for population structure and/or relatedness (Price et al. 2010).

The genomic control (GC) correction method has been deve-
loped to quantify systematic inflation and correct for it (Devlin
and Roeder 1999). It relies on the genomic inflation factor, also
called the A-value, which is defined as the ratio between the
median of the observed y*-association test statistic distribution
to its theoretical counterpart under the null hypothesis of no
association, where a value greater than 1 is indicative of an
inflation in the test statistics (Devlin and Roeder 1999). A key
assumption behind this calculation is that only a limited pro-
portion of the variants in the genome are associated with the
trait of interest, with most of the genome being under the null
model of no association. This assumption has been challenged
in recent large genetic studies of complex diseases, where it has
been observed that the number of genomic associations
detected increases linearly with GWAS sample size, especially
due to the detection of variants with smaller effect sizes
(Canela-Xandri et al. 2018). This underlines the polygenicity of
complex traits and the contribution of a high number of var-
iants with small individual effects (Visscher et al. 2021).
Accordingly, A-values have increased in studies with larger
sample sizes identifying larger proportions of the genome to be
associated with the trait (Yang et al. 2011). Intuitively, a larger
A-value will result in a more severe GC correction and may be
overconservative (Yang et al. 2011; Wang et al. 2012). Yet, it is
still frequent practice to GC correct the summary statistics at
the individual study level (single GC correction) as well as to
GC correct GWAS meta-analysis summary statistics (double GC
correction) by the respective A-values. However, it is challeng-
ing to discriminate between a high A-value that is due to con-
founding or due to high polygenicity of the trait. To tackle this
problem, the LD score regression (LDSR) correction method,
based on LD information and the distribution of y*-association
test statistics, has been developed and widely adopted to mea-
sure inflation and correct summary statistics (Bulik-Sullivan
et al. 2015). This method computes LD scores that capture the
likelihood of a variant tagging a true causal variant depending
upon the degree of LD with its neighboring variants. LDSR has

several key assumptions including that the trait being studied is
polygenic, that is, each variant contributes a small effect, the LD
scores are estimated from an appropriate reference population
and variants with higher LD score should have proportionally
larger effect sizes on the trait. A regression of y*-association test
statistics against LD scores is performed, where an intercept
value greater than 1 indicates confounding. The LDSR intercept
represents the expected test statistics for variants with LD score
of zero and can be used to correct the inflation in the y* test
statistics similarly to how the A-value is used in GC correction.
On the other hand, the slope of the regression line represents
the heritability of the trait, which is not independent from the
intercept. While it has been established that the A-value is
sensitive to sample size and polygenicity, the potential loss of
association signals and independent loci that could result from
GC correction in such studies, and whether LDSR intercept
correction could represent an effective alternative, remain
questions of interest for the scientific community. Here, we
investigate the effect of both correction methods using three of
the largest GWAS meta-analyses of T2D (Mahajan et al. 2018;
Mahajan et al. 2022; Suzuki et al. 2024). Our approach entails
analysis of GWAS meta-analyses of various sample sizes to
ascertain genomic variants consistently associated with T2D
across GWAS meta-analysis and how they are impacted by
inflation correction methods.

2 | Methods

2.1 | Type 2 Diabetes GWAS Meta-Analysis
Summary Statistics

We used three of the largest T2D GWAS meta-analyses from
the DIAMANTE Consortium and the Type 2 Diabetes Global
genomics Initiative (T2DGGI), all BMI-unadjusted, which we
referred to as DIAMANTE-18, DIAMANTE-22, and T2DGGI-
24 (Mahajan et al. 2018; Mahajan et al. 2022; Suzuki
et al. 2024). We used only the European-specific analysis from
the DIAMANTE-22 and the T2DGGI-24 studies, as these
comprise the largest subset of the multi-ancestry dataset and
enabled us to compare findings in a similar ancestry group
across the three meta-analyses (the DIAMANTE-18 study is
entirely based on European-ancestry GWAS). Additional
information about the European subset of each study is pro-
vided in Supporting Information S1: Table S1. To ensure a fair
comparison in our analysis, we did not use the A-values re-
ported by the respective study authors as they were based on
different filtering strategies across studies, especially in
DIAMANTE-18. Instead, we chose to perform our analysis on
the intersecting set of variants across the three studies, cor-
responding to 10,269,674 variants. The description of the three
studies, including the sample size, the number of total and
genome-wide significant variants in our analysis, the method
of correction (as reported in the original study), the A value
(computed on the shared set of variants or reported in the
original study), and the number of independent loci as re-
ported in the original study is provided in Table 1. The
DIAMANTE-18 and DIAMANTE-22 meta-analysis summary
statistics only report double GC-corrected p values. We
uncorrected the p values by calculating the y2-statistics cor-
responding to the double GC-corrected p values and by
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5%107%)

19,328
20,925
64,944

Significant

associations

(p<

Loci identified
231
277
611

(original study)

A-value
(new)
1.387
1.402
1.676

A-value
(original study)
1.013
1.096
1.283

Correction for
population structure
Double GC correction
Double GC correction
Individual study level
correction using LDSR

intercept

original study
ancestry group
1000 G

MAF > 0.5% in at least one of

the five ancestry groups from

Variants filtering in
HRC reference panel

Study characteristics of the three T2D GWAS meta-analyses included in our study.
Overlap of 1000 G and HRC,
MAF > 0.5% in at least one

Name of study
DIAMANTE-18 (74,124
cases, 824,006 controls)
DIAMANTE-22 (80,154
cases, 853,816 controls)
T2DGGI-24 (242,283
cases, 1,569,734 controls)

2-value (new) indicates the recalculated A-value on the selected set of 10,269,674 variants included across the three meta-analyses. The substantial difference between the original and the new A-values is due to the loss of low-frequency genetic variants in

Note: Double GC correction in GWAS meta-analysis means applying GC correction to the individual GWAS as well as to the meta-analysis summary statistics. A-value (original study) indicates the A-value reported by the authors of the original study.
our dataset compared to the original meta-analysis.

TABLE 1

multiplying them by the A-value reported in each study
(Table 1). These y2-statistics were used to determine the
uncorrected p values. We then calculated the inflation on
the shared set of variants using the GC method to determine
the new A values (Table 1). Finally, we re-corrected the p values
using these new A-values to obtain the new double GC-
corrected p values for our analysis. The impact of genomic
inflation correction was not assessed in the T2DGGI-24 meta-
analysis as it is the latest T2D GWAS meta-analysis. This study,
which report uncorrected p values, was employed to ascertain
high confidence variants in the DIAMANTE-18 and the
DIAMANTE-22 meta-analyses.

2.2 | Calculating the 1-Value and the LDSR
Intercept

The GC method computes the A-value which is defined as
follows:

Median (observed ’test statistics)

Avalue = R
Median (expected x2distribution)

In this equation, the median of expected y*-distribution is
0.454, corresponding to a y>-distribution with one degree of
freedom. For case-control GWAS, testing for association under
an additive model follow a y*-distribution with one degree of
freedom. To assess the effect of LDSR intercept correction, we
ran LDSR using the LDSC software (version 1.0.1) with the
--h2 option and calculated the LDSR intercept (Bulik-Sullivan
et al. 2015). Since we analyzed only the European subsets of
the meta-analyses, we employed precomputed LD scores from
the 1000 Genomes European ancestry haplotypes (Auton
et al. 2015). The LDSR intercept was used to correct the
uncorrected p values from the DIAMANTE-18 and the
DIAMANTE-22 meta-analysis summary statistics, following
the same approach as the GC correction. The impact of cor-
rection methods was not assessed in the T2DGGI-24 study.
Further, the A-value and the LDSR intercept were recomputed
after removing variants with a minor allele frequency (MAF)
below 0.5%, 1%, 5% and 10% by considering the MAF provided
in the respective summary statistics.

2.3 | Estimating Polygenicity of Type 2 Diabetes

We consider here the polygenicity as a reflection of the
proportion of the genome significantly associated with T2D.
It is a fixed quantity, which is increasingly captured with
larger sample size of GWAS. The variance explained by
polygenic factors can be captured by calculating the
correlation between the y*-values and the LD scores of the
variants. We computed this quantity using summary statis-
tics from the meta-analyses from the DIAMANTE-18,
DIAMANTE-22 and T2DGGI studies within each genetic
ancestry group (Mahajan et al. 2018; Mahajan et al. 2022;
Suzuki et al. 2024). The effective sample size of the ancestry
specific meta-analyses was calculated using the formula
(Willer et al. 2010):
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2.4 | Confirmation of Associations Across Type 2

Diabetes Meta-Analyses

We evaluated the impact of the GC and LDSR intercept corrections
on the T2D GWAS meta-analyses. The impact of employing either
of the two methods was studied in the smaller meta-analyses while,
the larger meta-analyses were employed to ascertain high confi-
dence associations. We performed pairwise analyses between T2D
meta-analyses and investigated associations which are confirmed
between smaller T2D GWAS meta-analysis and a larger one
(DIAMANTE-18 was analyzed with respect to DIAMANTE-22 and
T2DGGI-24, and DIAMANTE-22 was analyzed with respect to
T2DGGI-24). We refer to these high confidence associations as
“robust associations” in the sense that they remain significant with
a concordant direction of effect across successive GWAS meta-
analyses with increasing sample size. Note however that the term
“robust associations” has a statistical rather than biological meaning
as there was no validation in an experimental setting. Robust as-
sociations are defined as genetic variants significant at the genome-
wide significance threshold of 5x 107® in the earlier and the later
study with a consistent direction of effect between the two. The
percentage of robust associations between the two studies is com-
puted as follows:

%Robust associations

Total number of robust associations in earlier study % 100

" Total number of significant associations in earlier study

For each of the three analyses, we corrected only the earlier
study, while the later study is left uncorrected. To assess the
impact of correction in the earlier study, the percentage of
robust associations is calculated for uncorrected and corrected
GWAS meta-analysis summary statistics of the earlier study.

2.5 | Investigating Chromosomal Confirmation
Rate Using a Leave-One-Chromosome-Out (LOCO)
and Random Sampling Approach

To assess whether confirmation rates significantly vary
across chromosomes, we employed a LOCO framework.
Using the DIAMANTE-18 and DIAMANTE-22 meta-
analyses as an example, we first identified the number of
genome-wide significant variants on each chromosome in
DIAMANTE-18 and determined how many were confirmed
in DIAMANTE-22 (methods). Next, we randomly sampled
an equal number of genome-wide significant variants from
the rest of the genome, excluding the chromosome of
interest, and assessed the corresponding confirmation rate.
We then computed an empirical p value, denoted as p,,, as
following:

Zil min (I(Cs < Cobs,chr, Cs > C))
N

Pepr =

With N being the total number of samplings here corresponding
to 100,000, I() the indicator function, C; the confirmation rate

for the sampling s, and Cops o the confirmation rate observed for
the investigated chromosome. This analysis was conducted for all
chromosomes except chromosome 21, which lacked genome-wide
significant variants in the DIAMANTE-18 and the DIAMANTE-22
meta-analyses. We repeated the same for other pairwise analyses
considered in our study, i.e., DIAMANTE-18 with respect to
T2DGGI-24, and DIAMANTE-22 with respect to T2DGGI-24.
Further, to assess the effect of correction methods on chromo-
somal confirmation rate, we performed the described analysis on
summary statistics after GC or LDSR intercept correction.

2.6 | False Positive Rates and the True Positive
Rates

To assess the relative cost of losing robust associations in
comparison to removing false associations, which is the main
aim of the two correction methods, we computed the false
positive rate and the true positive rate on the aforementioned
pairwise analyses. False positive associations correspond to
genetic variants genome-wide significant in the earlier study
but not in the later study, or genome-wide significant in both
but with inconsistent direction of effect. True positive associa-
tions correspond to variants genome-wide significant in both
studies with consistent direction of effect. False negative asso-
ciations correspond to variants genome-wide significant only in
the later study and true negative associations to variants not
genome-wide significant in either study. We then calculate the
false positive rate and the true positive rate as:

False Positive Rate = False Positive

False Positive + True Negative

. True Positive
True Positive Rate = v

True Positive + False Negative

2.7 | Assessing the Loss of Independent Loci

In addition to describing the loss of robust associations from the
previous analyses, we investigated if this leads to a loss of an
independent locus. An independent associated locus is a genomic
region comprising multiple variants in high LD, which are signifi-
cantly associated with the trait of interest after accounting for other
nearby genetic variants. It is described using its chromosomal
location, genomic length (usually 1 Mb), and index variant (usually
the most significant variant). To do so, we used the study-defined
index variants as proxy for the DIAMANTE-18 and the
DIAMANTE-22 studies. To assess whether the lost robust associa-
tions lead to a loss of independent loci, we used the following
analysis workflow (Supporting Information S1: Figure S1) for each
chromosome:

1. We ran LD clumping using PLINK for DIAMANTE-18
and DIAMANTE-22 meta-analyses using 1000 genomes
reference data for Europeans (Purcell et al. 2007).

2. We calculated the genomic boundaries of the LD clumps
as the minimum and maximum genomic position in the
clump.
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3. We assessed the study defined T2D index variants to
determine the specific LD clump they belong to.

4. Next, we determined if the lost robust associations fall
within the same LD clumps as the study defined T2D
index variants.

5. Lost robust associations part of LD clumps different from
those of the study-defined index variants potentially rep-
resent lost independent loci.

6. Finally, we determined the number of unique LD clumps
for these lost robust associations untagged by study
defined T2D index variants.

In this, meta-analysis variants not part of the LD reference
panel and falling outside the LD clumps were defined as single
variant clumps. These variants were excluded when assessing
the loss of independent loci. The LD clumping in PLINK was
ran in windows of 500 kb with an r2 threshold of 0.20 and
significance thresholds of 5x 107® and 5x 107° for the index
and secondary signals, respectively.

Further, lost robust associations located at the major histo-
compatibility —complex region chr6:28,477,797-33,448,354
(GRCh37) were removed because the region is characterized
by extremely high LD and high density of genes which makes it
difficult to distinguish independent association signals (de
Bakker and Raychaudhuri 2012).

To calculate the percentage of lost independent loci, we divided
the number of independent loci lost due to correction by the
total number of significant independent loci before correction.
The total number of independent loci before correction was
determined by summing the lost independent loci and the
independent loci identified in the smaller study for the
respective analysis.

3 | Results
3.1 | Factors Contributing to Increased Genomic
Inflation

We started by investigating factors driving the lambda values by
analyzing the 10,269,674 variants included across the three
meta-analyses. We observe a linear trend between the effective
sample size of the meta-analysis and the A-values (Supporting
Information S1: Figure S2), as previously reported (Yang
et al. 2011). We next investigated the impact of allele frequency
cutoffs by recomputing A-values using varying MAF thresholds
(methods). We observed that A-values increase as rare and low-
frequency variants are removed (Supporting Information S1:
Figure S3A), likely reflecting lower statistical power
(Pritchard 2001; Li and Leal 2008). This was corroborated by the
fact that the A-value stabilizes after removing variants with a
MAF lower than 5% for each of the three meta-analyses
(Supporting Information S1: Figure S3). The same was found to
be true for LDSR intercept, although this increase was lower
compared to the A-value (Supporting Information S1:
Figure S3B). Finally, we investigated the impact of the poly-
genicity of the trait. Polygenicity is a fixed quantity associated

with complex traits, for which we have used as a proxy the
proportion of variance in the y>-statistics explained by polyge-
netic factors (methods). We find a general positive trend
between this quantity and the effective sample size of the
respective meta-analyses (Figure 1). This highlights that poly-
genicity is revealed with increasing sample size and contributes
to the rise in genomic inflation, concordant with results from
Yang et al. (Yang et al. 2011).

3.2 | Correction Post Meta-Analysis Leads to Loss
of Robust Associations

While previous studies have investigated factors leading to an
increase in genomic inflation, no study has assessed the impact
of the corresponding correction on the potential loss of genetic
signals. To investigate this question, we assessed whether GC-
correcting the p values would lead to a loss of robust associations.
For this, we conducted pairwise analyses between two successive
studies (methods). We calculated the proportion of robust asso-
ciations in the earlier study confirmed in the later study both
before and after applying the correction method. As shown in
Figure 2A, we observed a substantial decline in the proportion
of robust associations after GC correction, with as much as
49.08% of the robust associations being lost when analyzing
DIAMANTE-22 and T2DGGI-24 (Table 2). The robust associa-
tions that were lost show p values close to the genome-wide
significance threshold, explaining their loss after correction
(Supporting Information S1: Figure S4). Moreover, examining the
DIAMANTE-18 vs DIAMANTE-22 analysis, we found that out of
the 8359 robust associations lost due to GC correction, 8,015 were
retrieved in the larger T2DGGI-24 meta-analysis, where they
reached genome-wide significance. This demonstrates the power
of sample size in GWAS and confirms that the lost robust asso-
ciations indeed represent high confidence associations. We
compared these findings with a correction based on the LDSR,
which integrates LD information to better estimate inflation
compared to the A-value. For the DIAMANTE-18 and the
DIAMANTE-22 meta-analyses, we report lower values of the
LDSR intercept compared to the A-values (Table 2). By applying a
similar procedure as for the GC correction, we again observed a
decrease of the proportion of robust associations following cor-
rection (Table 2, Figure 2B), but which was less severe than

® African

® East-Asian

. Eyropean
ispanic

0.10 Sougth-Asian

<
o
>

Correlation(Chi-square, LD-Score)

o
o
=

11 12 13

Log(Effective sample-size)
FIGURE 1 | Effective sample size against the correlation between
x’-values and LD scores from ancestry-specific meta-analyses part of
DIAMANTE-18, DIAMANTE-22 and T2DGGI-24 meta-analyses.
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FIGURE 2 | The proportion of robust associations before and after correcting the earlier meta-analysis in the three analyses. (A) Correction using
the GC method. (B) Correction using the LDSR method.
when using the GC correction for all analyses. We observed that 3.4 | Confirmation Rates Vary Across the
robust associations that did not remain significant after correc- Genome

tion had p values near the genome-wide significance threshold
(Supporting Information S1: Figure S5). Of the 2509 robust as-
sociations lost following LDSR intercept correction between the
DIAMANTE-18 and the DIAMANTE-22 meta-analysis, 2367
were recovered in the larger T2DGGI-24 meta-analysis. Alto-
gether, we show that both correction methods lead to a loss of
robust associations, although this loss is notably smaller with the
LDSR intercept correction.

3.3 | Robust Associations Lost Only to GC
Correction Have Significantly Lower p values

Since the A-value is substantially higher than LDSR intercept
value for the DIAMANTE-18 and the DIAMANTE-22 meta-
analyses (Table 2), robust associations lost to LDSR intercept
correction are a subset of those lost to GC correction in the three
analyses. Given this observation, we analyzed associations lost
only to GC correction compared to those lost to both correction
methods. When analyzing DIAMANTE-18 and DIAMANTE-22,
we found 5850 robust associations that were lost only to GC
correction and 2509 robust associations that were lost to GC
correction and LDSR intercept correction. As expected, we found
that robust associations lost only to GC correction have signifi-
cantly lower p values compared to robust associations lost to GC
and LDSR intercept correction (t-test p <2x 107'°, Figure 3A,
Supporting Information S1: Figures S6 and S7). On average, we
observed lower MAF for the associations lost only due to GC
correction compared to associations lost with both correction
methods (ttest p <2 X 107, Figure 3B). We did not find signif-
icant differences in LD scores between associations lost only due
to GC correction or to both correction methods (t-test p = 0.346,
Figure 3C). Similar results were observed in the DIAMANTE-18
vs. T2DGGI-24 analysis (Supporting Information S1: Figure S6),
while in the DIAMANTE-22 vs. T2DGGI-24 analysis, we observed
significant differences in both the p value and LD score distri-
butions (Supporting Information S1: Figure S7).

We observed that confirmation rates vary across the genome,
with or without correcting the p values for genomic inflation
(Table 3 and Supporting Information S1: Table S2). To assess
whether specific chromosomes show confirmation rates signif-
icantly different from the rest of the genome, we employed a
LOCO approach with 100,000 samplings (methods). Across all
three uncorrected analyses, we consistently observed that the
confirmation rates for chromosomes 1 and 14 did not differ
from the rest of the genome (Supporting Information S1:
Table S2). In contrast, chromosomes 10, 12, 13, 15, 16 and 17
exhibited significantly higher confirmation rates, while chro-
mosome 13 had a significantly lower confirmation rate com-
pared to the rest of the genome. We then examined whether
these confirmation patterns persisted after applying GC or
LDSR intercept correction. Following GC correction, chromo-
somes 10, 12, 15, 16 and 17 continue showing a higher confir-
mation rate, while chromosome 13 showed lower confirmation
rate compared to the rest of the genome (Table 3). After LDSR
intercept correction, only chromosomes 10, 12, and 15 continue
showing significantly higher confirmation rates than the rest of
the genome. While no chromosome showed a lower confirma-
tion rate than the rest of the genome (Table 3).

3.5 | Correction Marginally Reduces the False
Positive Rate and Decreases the True Positive Rate

The main purpose of applying correction methods like GC and
LDSR is to eliminate false positive associations while retaining
robust associations. We therefore evaluated whether the loss of
robust associations was compensated by a strong decrease in
false positive signals by computing the false positive rate and
the true positive rate across the pairwise analyses. While
applying the GC correction led to a complete elimination of
false positive associations in the DIAMANTE-18 vs the
DIAMANTE-22 meta-analysis (Table 4), the true positive rate
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Loss of robust associations after GC and LDSR intercept correction in the three analyses.

TABLE 2

Robust associations lost

Robust associations after correction

Earlier study

LDSR

GC

LDSR
8359

GC

A-value LDSR Robust associations before correction

Analyzed studies

2509
3117
3041

15,757
15,713
17,364

9907
9893
10,390

18,266
18,830
20,405

1.097
1.097
1.091

1.387
1.387
1.402

DIAMANTE-18 versus DIAMANTE-22
DIAMANTE-18 versus T2DGGI-24

8937
10,015

DIAMANTE-22 versus T2DGGI-24

Note: LDSR indicates LDSR intercept calculated on the smaller study in the pairwise analysis.

fell drastically in the same analysis. When using LDSR intercept
correction, the false positive rate was 10 times lower than before
correction, and the decrease in the true positive rate was
smaller compared to the GC correction (Table 4). A similar
pattern was observed in the DIAMANTE-18 vs the T2DGGI-24
and the DIAMANTE-22 vs the T2DGGI-24 analyses (Table 4).
Despite the observed decrease in the false positive rate, we show
that this rate was small even before applying any correction in
the different meta-analyses. This observation is likely due to the
individual studies contributing to the meta-analysis being cor-
rected at the individual study level using GC. In summary, we
conclude that applying the GC correction method in large meta-
analyses reduces the false positive rate, although being already
low, and substantially decreases the true positive rate, resulting
in a loss of robust associations. In concordance with the pre-
vious result of our study, the decrease in true positive rate was
smaller using the LDSR intercept correction than the GC
correction.

3.6 | Correction Post Meta-Analysis Leads to Loss
of Independent Loci

As tested variants in GWAS meta-analyses are correlated due to
LD, we investigated whether the lost robust associations lead to
a loss of independent loci, and thus biological insight into the
disease. To do so, we evaluated if robust associations lost from
each of the three analyses were tagged by any of the predefined
T2D index variant in the original study (methods). Robust as-
sociations that were untagged were further analyzed and a
subset of them were found to represent lost independent loci
(methods). Comparing the DIAMANTE-18 and DIAMANTE-22
studies while excluding single variant clumps, we found that
GC and LDSR intercept corrections resulted in the loss of 149
(39.2%) and 90 (23.6%) independent loci from the DIAMANTE-
18 meta-analysis, respectively (Table 5). When analyzing the
DIAMANTE and the T2DGGI-24 studies, both correction
methods showed a loss of large number of loci (Table 5). The
DIAMANTE-22 meta-analysis showed a loss of 170 loci due to
GC correction which corresponds to a loss of 38.0% of the
independent loci before correction in the DIAMANTE-22 study.
We observed that both correction methods result in a substan-
tial loss of biological information, but, in concordance with the
previous results, the loss was smaller using the LDSR intercept
correction compared to GC correction.

4 | Discussion

Correction of genomic inflation arising from systematic bias in
GWAS is important in genetic association studies. Using T2D as
an exemplar polygenic disease and three of the largest T2D
GWAS meta-analyses to date, we explore two widely used cor-
rection methods, the GC based on the A-value, and the LDSR.
We confirm previous observations that A-values from meta-
analyses increase with sample size and captured polygenicity of
the disease. By further investigating the consequences of cor-
rection on associations, we show that it leads to a loss of power,
through the loss of confirmed, high confidence associations, as
well as independent loci. We further show that, GC correction
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DIAMANTE-18 vs. DIAMANTE-22
A. P-value distribution
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FIGURE 3 | Distributions of p values, MAF and LD-scores for robust associations lost only to GC correction compared to those lost to both GC
and LDSR intercept correction in the DIAMANTE-18 and the DIAMANTE-22 analysis. p value distribution: t-test p <2x 107", Minor allele
frequency distribution: t-test p <2 x 107'%. LD score distribution: t-test p=0.346. (A) P-value distribution (B) Minor allele frequency distribution

(C) LD-score distribution 0.015

leads to a larger loss in power compared to LDSR intercept
correction, characterized by a smaller loss of robust associations
and independent loci.

The emergence of global consortia and the resulting increase in
the sample size of large GWAS meta-analyses have greatly
contributed to our understanding of the genetic architecture of
complex traits and diseases like height, T2D, and schizophrenia
(Trubetskoy et al. 2022; Yengo et al. 2022; Suzuki et al. 2024).
This has been accompanied by higher A-values for traits with a
substantial polygenic background. The polygenicity of a trait is
a fixed quantity which is being increasingly captured with
larger sample size and higher statistical power to detect var-
iants, asymptotically approaching that fixed quantity. In our
study, we proxied polygenicity by the correlation between the
x*-values and LD scores from ancestry specific meta-analyses
from DIAMANTE-18, DIAMANTE-22, and T2DGGI-24 studies.
Other methods, such as the attenuation ratio, have been deve-
loped to estimate polygenic effects (Loh et al. 2018). This
method relies on the observed )(z-test statistics, which were not
available to us for all the individual T2D GWAS comprising the
T2DGGI-24 meta-analysis. Related to this limitation, we were
unable to compute the correlation between LD score and y?2
statistics for individual T2D GWAS and relied instead on
ancestry-specific meta-analysis summary statistics. Our results
are in line with the findings of Yang et al. which describes the
effect of sample size and polygenicity on A-value (Yang
et al. 2011). Additionally, we show that A-value and LDSR
intercept are sensitive to the variant frequency thresholds used
in meta-analysis, with the inclusion of rarer variants leading to
a decreased inflation, with an effect less pronounced on the
LDSR intercept. Larger sample size leads to increased statistical
power, which is, however, still limited for rare and low

frequency variants (Lee et al. 2014; Bomba et al. 2017). Even if
detected as genome-wide significant, such rare variants likely
have p values close to the significance threshold and will,
therefore, also be impacted by GC correction, as highlighted in a
previous study by Georgiopoulos & Evangelou (Georgiopoulos
and Evangelou 2016).

In addition, we investigate, for the first time, the consequences
on information lost from correction. Firstly, we demonstrate
that GC correction leads to a loss of robust associations, i.e.,
associations that were confirmed in a larger GWAS meta-
analysis. By assessing these lost associations in a subsequent
study, we further confirm that they correspond to high confi-
dence signals being recapitulated in meta-analyses with larger
sample sizes. Some associations were lost only with GC cor-
rection and not LDSR intercept correction due to the larger A-
values, which were found to show significantly lower p values
and MAF. Variants with higher MAF are expected to have
longer range LD and higher LD scores compared to variants
with lower MAF (Gazal et al. 2017; Lee et al. 2018). However,
we found no significant difference between the LD scores of
associations being lost only to GC correction compared to as-
sociations lost to both correction methods. Analyzing the con-
firmation rate by chromosome reveals distinct patterns, some of
which are consistent while others disappear after GC or LDSR
intercept correction. Moreover, reflecting these results, we
observe that GC correction led to a steep decline in the true
positive rate, as well as a reduction in an already low false
positive rate. Compared to GC correction, LDSR intercept cor-
rection resulted in a lower loss of robust associations and
independent loci but still led to a substantial reduction in sta-
tistical power, affecting as much as 25.2% of the T2D loci
identified in the DIAMANTE-18 meta-analysis. Thus, we
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TABLE 3 | Chromosomal confirmation rate assessed using a LOCO framework with 100,000 genome-wide random samplings (after GC or LDSR
intercept correction) in the DIAMANTE-22 vs T2DGGI-24 analysis as an example.

Mean confirmation rate in the rest of the genome from simulation

Observed confirmation rate
DIAMANTE-22 versus T2DGGI-24

(p value)
DIAMANTE-22 versus T2DGGI-24

LDSR intercept

Chr GC correction correction GC correction LDSR intercept correction
1 0.81 0.88 0.80 (0.36) 0.88 (0.10)
2 0.73 0.86 0.71 (< 1e-6) 0.85 (< 1e-6)
3 0.77 0.83 0.75 (1e-5) 0.82 (< 1e-6)
4 0.68 0.7 0.74 (< 1e-6) 0.73 (< 1e-6)
5 0.73 0.83 0.77 (< 1e-6) 0.85 (< 1e-6)
6 0.73 0.88 0.75 (< 1e-6) 0.90 (< 1e-6)
7 0.79 0.91 0.79 (0.24) 0.90 (2e-2)
8 0.78 0.75 0.77 (1e-2) 0.74 (1e-3)
9 0.76 0.74 0.75 (4e-2) 0.74 (0.11)
10 0.75 0.91 0.73 (< 1e-6) 0.90 (7e-4)
11 0.74 0.72 0.73 (< 1e-6) 0.71 (2e-4)
12 0.77 0.83 0.75 (< 1e-6) 0.81 (1e-5)
13 0.78 0.69 0.86 (< 1e-6) 0.69 (0.28)
14 0.8 0.6 0.80 (0.49) 0.60 (9e-2)
15 0.82 0.83 0.80 (< 1e-6) 0.81 (2e-5)
16 0.72 0.86 0.70 (1e-4) 0.85 (2e-3)
17 0.76 0.83 0.74 (1e-5) 0.82 (2e-3)
18 0.77 0.73 0.75 (7e-3) 0.72 (2e-2)
19 0.75 0.82 0.73 (5e-4) 0.80 (le-2)
20 0.72 0.79 0.75 (8e-4) 0.79 (0.20)
22 0.74 0.75 0.76 (5e-4) 0.75 (0.20)

Note: Empirical p values highlighted in bold are significant at a Bonferroni significance threshold of 0.0023 corrected for the 21 chromosomes.

Abbreviation: Chr, chromosome.

TABLE 4 | False positive rate and true positive rate before and after GC and LDSR intercept correction in the three analyses.

GC correction

LDSR intercept correction

False positive rate

True positive rate

False positive rate = True positive rate

Before/After correction Before After

DIAMANTE-18 versus 0.0001 0
DIAMANTE-22

DIAMANTE-18 versus 0.00004 0.000001
T2DGGI-24
DIAMANTE-22 versus 0.00005 0.000004
T2DGGI-24

Before After

Before After Before After

0.87 0.47 0.0001 0.00001 0.87 0.75
0.28 0.15 0.00004 0.00002 0.28 0.24
0.31 0.15 0.00005 0.00002 0.31 0.26

demonstrate that using either correction method ultimately
leads to a substantial loss of potential biological insights.

Although our study demonstrates the effect of GC and LDSR
intercept correction in large meta-analyses, we focus our main
comparative analysis only on the European subset of the meta-
analyses to limit the impact of ancestry-related differences.

Further research is needed to assess the impact of correction in
other ancestries. However, current sample sizes for these popu-
lations are still smaller compared to those in European GWAS.
When sample sizes are equalized, we expect the impact to be at
least as significant as observed in European ancestry GWAS. This
is particularly true for LDSR intercept correction, which relies on
LD estimates that are less precise due to underrepresentation of
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Loss of independent loci after GC and LDSR intercept correction in the three analyses.

TABLE 5

LDSR intercept correction

GC correction

Lost robust
associations

Lost robust
associations

Significant

independent loci
before correction

% of lost
independent loci

% of lost Independent
independent loci

Independent

loci lost

untagged

loci lost

untagged

Analyzed studies
DIAMANTE-18

versus

23.60%

90

490

39.20%

149

1609

380

DIAMANTE-22

151 39.70% 656 96 25.20%

1799

380

DIAMANTE-18

versus T2DGGI-24
DIAMANTE-22

22.80%

102

1068

38.00%

170

2593

447

versus T2DGGI-24

non-EUR populations in LD reference panels (Appadurai
et al. 2023). Leveraging the power of genetic diversity, multi-
ancestry meta-analysis tools like MR-MEGA have been key
to the discovery of novel genetic loci associated with com-
plex traits (Mé&gi et al. 2017). The impact of correction in
multi-ancestry meta-analysis remains to be explored, espe-
cially LDSR intercept correction, which is affected by the
aforementioned challenges. In the multi-ancestry meta-
analyses of DIAMANTE-22 and T2DGGI-24, the authors
reported lower A-values when accounting for ancestry-
correlated allelic effect heterogeneity compared to fixed or
random effects meta-analysis. This highlights the need to
use specific methods when performing trans-ancestry meta-
analyses to better model differences across ancestries.
Studying variants with heterogenous effect sizes across
ancestral groups, which are detectable in larger and more
diverse meta-analyses, is important for understanding the
genetic architecture of the disease. Considering this, it
would be important to assess the impact of correction on the
confirmation of variants with fixed and heterogeneous ef-
fects across ancestral groups. Another limitation of our
study is the presence of sample overlap among the
three meta-analyses. Specifically, the DIAMANTE-18 and
DIAMANTE-22 datasets are fully included within the
T2DGGI-24 meta-analysis. Such overlap can artificially
inflate the observed concordance between studies. However,
T2DGGI-24 includes more than three times the number of
T2D cases compared to either DIAMANTE studies, resulting
in substantially greater statistical power to detect associa-
tions (Skol et al. 2006). This large sample size enables the
T2DGGI-24 meta-analysis to more comprehensively capture
the polygenic architecture of T2D, leading to identification
of several hundred novel loci—substantially more than ei-
ther of the DIAMANTE studies (Rotondi and Bull 2013).

The GC method was originally developed under the assumption
that more than 50% of the tested genetic variants are not
associated with the trait. However, this assumption is increas-
ingly challenged in large-scale GWAS meta-analyses of complex
traits, where a substantial portion of the genome shows asso-
ciation. As highlighted from our study, further methodological
developments to better assess genomic inflation are needed.
One potential direction would be to use different percentiles of
the test statistic distribution in the GC correction rather than
the median. Alternatively, as statistical power depends on the
MAF of the variants (Supporting Information S1: Figure S3A),
GC corrections could be derived representing different fre-
quency strata. Ideally, new methods should be developed at a
finer scale to improve calibration and better capture the genetic
architecture of complex traits. As meta-analyses increase in
sample size, they gain greater power to detect associations
involving low-frequency variants. However, many of these
variants are absent or poorly represented in reference panels,
leading to inaccuracies in LD score estimation. This mismatch
can result in inflated estimates of confounding in the LDSR, as
the model may misattribute the signal from low-frequency
polygenic effects to confounding bias.

In conclusion, our findings suggest that GC and LDSR intercept
correction are not optimal for addressing genomic inflation in
large meta-analyses of polygenic traits, as polygenicity is better
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accounted for in large meta-analyses. We demonstrate that
although LDSR intercept correction reduces the loss of robust
associations and independent loci compared to GC correction, it
still leads to a loss of power. We expect these issues to persist in
upcoming meta-analyses, which will be larger and thus cap-
turing more polygenic effects of complex traits, as well as more
diverse, making the use of LD-based methods challenging. We
therefore highlight the need for methodological development to
better capture and correct for genomic inflation in large GWAS
meta-analyses, including the need of more representative
LD reference panels to improve the accuracy of LD score
calculations.
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