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Unravelling the genetic architecture of human
complex traits through whole genome
sequencing
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Whole genome sequencing has enabled new
insights into the genetic architecture of complex
traits, especially through access to low-
frequency and rare variation. This Comment
highlights the key contributions from this tech-
nology and discusses considerations for its use
and future perspectives.

The field of human complex trait genetics has been enriched by high-
throughput whole genome sequencing (WGS) technologies. WGS
complements array-based genotyping by offering the opportunity to
access most sequence in the genome and not only a set of known
genetic variants. As sequencing costs gradually drop, an increasing
number of study designs involve WGS approaches. Large sequencing
projects have been undertaken in the general population that can be
used as reference panels for genotype imputation in association stu-
dies, such as the Haplotype Reference Consortium (HRC1) project.
Further initiatives, such asUKBioBank2 and TOPMed3, alsomake use of
WGS technologies to sequence thousands of phenotypically-diverse
individuals, providing resources of unprecedented scale to study
the genetic architecture underlying complex diseases and traits4. Here,
we comment on the progress and successes in the field heralded
through WGS, as well as on future perspectives of this technology.

Advantages of WGS
Access to rare variation. The main advantage of using WGS approa-
ches is direct access to genetic variation across the whole frequency
spectrum, without first knowing where such variation occurs, as is
required for array-based genotyping. Low frequency and rare variants
areoften not imputed accurately from referencepanels (which are also
frequently not a perfect population match), but can be detected by
WGS. WGS offers more accurate and complete information capture of
rare variation observed in sequenced individuals, their family mem-
bers, and others with shared ancestry5. WGS-based studies have
reported associations with rare variants of large effect size. These
associations have been described in case-control studies, for example,
in the TOPMed project where Zhao et al. identified a rare variant with a
large effect on reduced lung function6, as well as in quantitative trait
studies, for example, in the study by Benonisdottir et al., which iden-
tified nine rare variants associated with urinary biomarkers7. Detecting
single-point rare variant associations requires very large sample sizes,
especially if effect sizes arenot large. Tomaximise the chance todetect
rare variants associatedwith complex diseases and to consider genetic
heterogeneity between individuals, rare variant association tests
(RVAT) have been developed. These methods have enabled the

detection of associations between medically relevant traits and an
accumulation of rare variants in a chromosomal region, typically a
single gene. For example, Gilly et al. described a cardioprotective rare
variant burden in the APOC3 gene, composed of exonic and
splice variants, which could not be detected using imputation of
genotype data8. In a larger study, by applying gene-based burden tests
in over 17,000 binary phenotypes, Wang et al. identified over
1,700 significant associations, highlighting the importance of rare
genetic variation in complex diseases9. Followed by functional inves-
tigation, these findings are bringing new insights into the biological
mechanisms behind complex diseases. Nevertheless, biological inter-
pretation can be more readily reached for the exome, on which the
majority of RVAT have currently been applied.

Despite the description of several associations with rare variants,
it is still unclear howmuch they contribute to the heritability of human
complex traits. This proportion is especially hard to estimate for rare
variants as they correspond to observations only in a few individuals
resulting in high standard errors10. As common variants are present in
more individuals, it is expected that they will contribute more to the
phenotypic variance than rare variants. Apart from a few examples
such as height11 or type 2 diabetes12, several studies have indeed shown
that complex trait heritability due to rare variants is expected to be
rather low. For example, by looking at 22 common traits, Weiner et al.
showed that rare coding variants explain on average only 1.3% of the
overall phenotypic variance, ranging from 0.4% for asthma to 3.6% for
height13. While rare variants will unlikely explain all the remaining
phenotypic variability of complex traits, they can also be useful for
prediction14. For instance, a study to predict haemoglobin A1C levels
showed that the integration of many rare variants into prediction
scores could lead to the identification of a substantial number of
undiagnosed type 2 diabetes cases15.

Ancestry-diverse studies. A further important benefit of WGS is the
investigation of under-represented populations that have not been
well characterisedby currently available sequencingdata, inwhich rare
or population-enriched variation is therefore not accurately
described16. For example, using genotyping and low-depth sequencing
in 6,400 individuals from the Uganda population, numerous associa-
tionswere identifiedwith complex traits, including both novel findings
and associations at previously reported loci but with different allelic
effects17. Similarly, sequencing followed by imputation of the Icelandic
population has resulted in novel insights, including an association
between a splice variant in RPL3L and atrial fibrillation18. Considering
sub-populations within Europeans is also of interest: in Norwegians,
low-depth sequencing followed by a custom genotyping array per-
formed on 70,000 individuals resulted in new associations, e.g.,
between ZNF529 p.K405X and LDL-C19. A GWAS performed in the
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Finnish population on 1,932 phenotypes found 2,491 significant asso-
ciations, including newly associated variants that could be identified
due to their higher frequency in the Finnish population. For example,
an intronic variant of TNRC18 strongly associated with IBD but almost
absent from other European populations20. WGS in diverse popula-
tions represents one of themost active areas of research, as getting an
overview of the genetic architecture in diverse populations will enable
better comprehension of complex diseases aswell as the differences in
effect direction and sizes of the associated variants that are observed
across populations10.

Considerations in WGS-based studies
Challenges in study design. Genotype-based GWAS is an established
fieldwherepower has been shown to clearly dependon the sample size
and the detectable genetic effect21, however, planning the design of a
sequencing-based study can bemore challenging. Li et al. showed that
power indeed also depends on read depth and distribution22. In addi-
tion, the power of RVAT is less straightforward to estimate compared
to single-point association analysis, because it depends on additional
parameters such as the filtering strategy used to select qualifying
variants and their directions of effect. Power is a major driver of the

success of a study, and multiple software packages are available to
estimate the expected power of WGS-based studies, as reviewed in
Li et al.22. Conducting studies indiverse populations canprovide useful
insights into the genetics of complex diseases. Furthermore, power to
detect associations can be boosted by studying isolated populations,
in which variant frequencies and effect sizes may be larger8,18,20. As the
majority of WGS projects to date have been focused on European
populations, conducting sequencing-based studies in under-
represented populations is expected to be of benefit10 and repre-
sents an important direction for future WGS applications.

Determination of WGS approach. WGS-based studies can take var-
ious forms, for which the optimal choice will depend on several
parameters including the population under study, the biological
hypothesis investigated and the computational and financial resources
available, with the cost of WGS being its largest disadvantage. These
forms includeWGS coupled to imputation in genome-wide association
studies, cohort-wide low- or very low-depth WGS, and deep WGS
(Box 1). When the interest is in related samples or under-represented
populations, low and very-low depth WGS approaches may be rela-
tively more efficient compared to when examining well-studied

BOX 1

Overview of the different sequencing techniques currently available
White boxes correspond to coding exons and thin black lines to
sequencing reads. The sequencing depth is represented at the bottom

of eachgraphicbybrown shades. Pros andconsof thedifferent depths
and genome coverage are highlighted.
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populations. For example, Tranet al. performed low-depth sequencing
to genetically describe the Vietnamese population and reported five
disease-associated pathogenic variants with higher allelic frequencies
than in other populations23. Low-depth sequencing has indeed been
shown to be more efficient than classical imputation-coupled array
designs in detecting GWAS signals, primarily due to a more complete
assessment of genomic variation, especially in ancestries with poor
coverage in existing imputation panels24. Thiswas illustrated in a study
from Gilly et al. in an isolated Greek population where twice as many
variants were detected using very low-depth WGS as compared to
classical imputed array genotyping data, and a vast majority of which
were rare variants, leading to a twofold increase in the number of
association signals25. Nevertheless, low-depth WGS shows decreased
accuracywhen studying rare variation (frequency lower than 1%) in the
genomecompared to low-frequency (frequencybetween 1 and 5%) and
common variants. To identify such variation, medium-depth designs
can be applied, or high-depth sequencing for detecting indels and
ultra-rare variation, such as singletons, with high accuracy26. While
high-depth WGS has proven to be useful, for example, in the study by
Wessel et al., which described the contribution of rare non-coding
variants to type 2 diabetes12, it remains expensive, especially for large
cohorts. A solution to perform high-depth sequencing at a lower cost
would be to focus on coding parts of the genome by using whole
exome sequencing (WES). The lower cost associated with WES would
enable the inclusion of more individuals in the study and therefore an
increase in the power to detect genetic variants that reside in genes
and are associated with human complex traits, as illustrated in the
study by Wang et al.9. Nevertheless, using WES instead of WGS misses
genetic variation in the non-coding genome (or any gene with poor
coverage in whole exome studies), which has been shown to play an
important role in complex diseases27. Finally, emerging technologies
such as long-read sequencing offer the possibility to access genome-
wide structural variants which have been found to have an impact on
complex phenotypes as highlighted by Beyter et al. on LDL cholesterol
levels and height28. This approach provides additional advantages,
such as easier assembly and mapping of genomes, but remains the
most expensive sequencing technology, preventing its use in large
cohorts.

Disadvantages compared to genotype-based studies. Despite
recent progress, the cost of WGS remains prohibitive for most large-
scale studies. Genotyping coupled to imputation can retrieve most
common variation in the genome29. The use of cost-efficient array-
based technologies enables increasing sample sizes, which in turns
results in the identification of further associations with common and
low-frequency variants. One striking example is the study by Yengo
et al. on over 5 million individuals, which has described all of the
genetic heritability of height due to common variants30. The con-
tribution of common variants to the genetic architecture of human
complex traits is still not fully understood and array-based technolo-
gies will continue to be useful in filling this gap. In addition, while
sequencing will continue to contribute to obtaining the whole picture
of the genetic architecture of complex traits, it is likely that translation
into the clinic to screen for polygenic risk will focus on array-
genotyping approaches rather than on sequencing at first.

Perspectives and conclusion
WGS has made an important contribution to the understanding of
genetics underlying complex traits, especially in under-represented

populations, and through rare variation. Functional interpretation of
association signals arising from WGS remains more challenging in the
non-coding genome compared to the exome. Even if single-point
associations have been described with rare and common variants in
these regions, it is still arduous to biologically characterise these
association signals. Combining association results from WGS with
functional information at multiple levels, using, for example, other
omics data such as transcriptomics, open chromatin, methylation,
metabolomics or proteomics, has been shown to help in the inter-
pretation of the associated signals31. Similarly, using RVAT in non-
coding regions of the genome is not straightforward, despite affording
higher power to detect genetic associations with rare variants32. Novel
statistical methods are therefore needed which, for example, consider
functional information across the non-coding genome33,34. WGS stu-
dies will remain useful in the future as a tool to explore the genetic
underpinning of complex diseases, especially in combination with
emerging functional data and their integration at multiple levels. As
the cost of WGS is dropping and given the exciting prospect of long-
read WGS at scale, these technologies will become increasingly
accessible and will enable the description of genetic variation in
hitherto understudied populations. As our understanding of the non-
coding genome continues to improve, and with the further develop-
ment of powerful methods to integrate functional information in rare
variant association testing approaches, WGS will hopefully lead to a
better and more accurate comprehension of complex diseases. In the
future, it is anticipated that WGS-informed clinical decisions and
interventionswill accelerate personalisedmedicine in thewiderfieldof
complex diseases, following recent successes in cancer and rare dis-
ease, such as monogenic forms of cardiomyopathy35,36. To achieve
these goals in a globally equitable fashion,WGS of diverse populations
should remain a high priority going forward.
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