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Bridging the diversity gap: Analytical and study
design considerations for improving the accuracy
of trans-ancestry genetic prediction
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Summary
Genetic prediction of common complex disease risk is an essential component of precision medicine. Currently, genome-wide associ-

ation studies (GWASs) are mostly composed of European-ancestry samples and resulting polygenic scores (PGSs) have been shown to

poorly transfer to other ancestries partly due to heterogeneity of allelic effects between populations. Fixed-effects (FETA) and

random-effects (RETA) trans-ancestry meta-analyses do not model such ancestry-related heterogeneity, while ancestry-specific (AS)

scores may suffer from low power due to low sample sizes. In contrast, trans-ancestry meta-regression (TAMR) builds ancestry-aware

PGS that account for more complex trans-ancestry architectures. Here, we examine the predictive performance of these four PGSs under

multiple genetic architectures and ancestry configurations. We show that the predictive performance of FETA and RETA is strongly

affected by cross-ancestry genetic heterogeneity, while AS PGS performance decreases in under-represented target populations. TAMR

PGS is also impacted by heterogeneity but maintains good prediction performance in most situations, especially in ancestry-diverse sce-

narios. In simulations of human complex traits, TAMR scores currently explain 25% more phenotypic variance than AS in triglyceride

levels and 33%more phenotypic variance than FETA in type 2 diabetes in most non-European populations. Importantly, a high propor-

tion of non-European-ancestry individuals is needed to reach prediction levels that are comparable in those populations to the one

observed in European-ancestry studies. Our results highlight the need to rebalance the ancestral composition of GWAS to enable accu-

rate prediction in non-European-ancestry groups, and demonstrate the relevance of meta-regression approaches for compensating some

of the current population biases in GWAS.
Genome-wide association studies (GWASs) have greatly

improved our understanding of the genetics of human

complex traits, with over 415,000 genetic associations

described across approximately 5,900 studies to date.1

This achievement has been made possible partly through

the development of large genotyping and sequencing pro-

jects including the UK Biobank,2 the TOPMed program,3

and the FinnGen study.4 Although GWASs have reached

unprecedented sample sizes, European-ancestry (EUR) indi-

viduals still dominate their ancestry composition. They

commonly represent around 80% of sample sizes, a ratio

that has not decreased in the last few years.5 Human popu-

lations differ in linkage disequilibrium patterns, allelic fre-

quencies, and exposures to environmental factors.6,7 As a

result, common variants associated with a wide range of

complex phenotypes tend to have different effect sizes be-

tween populations.8–10 Polygenic scores (PGSs) that aim

to predict complex human traits by aggregating observed

effects across the genome are built from GWASs and are

therefore mainly constructed on EUR samples. Due to the

heterogeneous genetic architecture between populations,

numerous studies have shown that EUR-based PGSs poorly

transfer to non-European-ancestry (non-EUR) populations,

especially those at greater genetic distance such as those of

African ancestry (AFR).11–15 A recent study even showed
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that a current schizophrenia PGS is more correlated with

the ancestry of the individuals than with the trait itself.16

GWASs in non-EUR populations tend to be small if they

exist at all, which prevents the development of ancestry-

specific (AS) PGSs in those populations. To improve predic-

tions in non-EUR populations, studies from diverse ances-

tries can be combined through the use of meta-analysis.

The most used approach is the fixed-effect model that

weights the effect size of a study based on the inverse of

the variance, with the assumption that all studies measure

the same underlying effect for each variant.17 These

methods performpoorlywhengenetic heterogeneity is pre-

sent among contributing studies, a situation that is more

likely when combining data from diverse ancestries than

when aggregating GWASs from the same population back-

ground.8–10 Random-effect models have been developed

to address this issue, but they do not assume any pattern

in the heterogeneity between studies and tend to have

a limited advantage over fixed-effect meta-analyses.18

Several further methods aim to specifically answer the

question of PGS transferability to non-EUR popula-

tions, including the meta-regression model.19–21 In this

framework, axes of genetic variation obtained from princi-

pal-component analysis (PCA) on the populations are

incorporated in the regression model to represent
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Figure 1. Overview of the traps simulation
procedure
NSNP corresponds to the number of causal
SNPs simulated, h2

SNP to the heritability of
the trait, PHET to the proportion of SNPs
with genetic heterogeneity, banc to the effect
size in the corresponding ancestry, and PEUR
to the proportion of European-ancestry
individuals.
ancestry-related heterogeneity of the genetic effects, lead-

ing to a higher predictive power in under-represented pop-

ulations.19,22 To date, studies on PGS transferability have

mostly focused on evaluating population-specific scores

(mainly EUR-based) without extensive evaluation of

trans-ancestry PGSs.11–14,23 Even when trans-ancestry

PGSs were evaluated, no extensive assessment considering

the genetic architecture of the trait or the impact of the

ancestry composition of the sample was performed.24 This

question is important, as trans-ancestry PGSs have been

shown to outperform population-specific PGSs for diverse

ancestries, including Japanese25 and Latino.20 To fill in

this gap, we developed a TRans-Ancestry PGS Simulation

(traps) procedure to perform a comprehensive assessment

of the parameters influencing the transferability of four

PGS models in non-EUR populations: an AS PGS (AS), a

PGS from a fixed-effect trans-ancestry meta-analysis

(FETA), a PGS from a random-effect trans-ancestry meta-

analysis (RETA), and PGS froma trans-ancestrymeta-regres-

sion incorporating ancestry-related heterogeneity (TAMR),

implemented in the MR-MEGA software.19 In this work,

we investigate the relative performance of the four ap-

proaches via simulation and application to two complex

human traits. We chose to focus here on PGSmethods con-

structed from SNPs that meet a predefined significance

threshold and therefore did not consider the most recent

methods integrating genome-wide SNPs such as PRS-

CSx.24 Indeed, the main purpose of this study was not to

performa comprehensive quantitative comparisonof avail-

able PGS methods but rather to assess parameters influ-

encing PGS transferability and support the need for trans-

ancestry studies. We focused on this class of PGSs as it has

been shown to be of similar performance as genome-wide

PGSs in type 2 diabetes (T2D), one of our disease models,26

and because we simulated variants without considering

linkage disequilibrium (LD), which is more compatible

with PGS built up on significant variants.
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We simulate data under a wide

range of scenarios following the pro-

cedure represented in Figure 1 and

further described in the supplemental

methods. In brief, we extract common

variants from the 1000 Genomes

project27 by filtering out sites with a

minor allele frequency lower than 1%

in all ancestries. In each simulation,

we sample a given number of variants
from these and genotypes are simulated at the subpopula-

tion level with the corresponding allelic frequencies under

Hardy-Weinberg equilibrium. We randomly choose four

subpopulations in each of the five 1000 Genomes ancestry

groups: African (GWD, LWK, MSL, YRI), American (CLM,

MXL, PEL, PUR), East-Asian (CDX, CHB, JPT, KHV), Euro-

pean (FIN, GBS, TSI, IBS), and South-Asian (BEB, GIH,

PJL, STU). We specify a varying proportion of EUR individ-

uals, with the four remaining non-EUR populations being

of equal sample size. We then simulate phenotypes as

y ¼ bGþ ε, where G corresponds to the simulated geno-

types and ε � N

�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � h2

SNP

q �
, h2

SNP being the heritabili-

ty of the trait. The b vector corresponds to the effect sizes of

the variants generated through the log-normal model and

further adjusted on h2
SNP, with all the simulated variants be-

ing considered as causal. The log-normal model has been

shown to be well-adapted to model common variant effect

sizes.28 Finally, we specify a proportion of variants with

heterogeneous effects across populations. For those, we

draw non-null genetic effect sizes in only one ancestry, as

opposed to homogeneous variants, for which we draw

identical, non-null effects across all of the five ancestries.

The same set of simulations are performed twice: once to

simulate a base sample where we perform GWASs to esti-

mate variant effect sizes and select the significant variants

for PGS construction and once to simulate a target sample

onwhich we apply PGSs and correlate themwith the simu-

lated phenotypes. Unless otherwise stated, 150,000 indi-

viduals are simulated both in the base and in the target

sample. We consider the four PGSs aforementioned: AS,

FETA, RETA, and TAMR. Only SNPs meeting the genome-

wide significance threshold (P < 5 3 10�8) in the AS,

FETA, RETA, and TAMR analyses are included in the corre-

sponding PGS. We use R-squared values to assess the pre-

dictive performance of the PGS under a direct model where

we consider that individual data are available or under an



Figure 2. Assessment of the impact of the simulated heterogeneity on the accuracy of the four PGSs TAMR, FETA, RETA, and AS
500 causal SNPs are simulated with a heritability of 50%. PGS performances are evaluated in the African population from the 1000 Ge-
nomes project for four percentages of European-ancestry individuals using the direct method. Error bars represent the standard error of
the mean variance explained across 10 simulation replicates.
indirect model relying on summary statistics. We report re-

sults in each of the five 1000 Genomes ancestries by

averaging the measures of fit across the corresponding

subpopulations.

Overall, varying the heritability or the number of causal

SNPs in the simulations affects the absolute prediction per-

formance of the three PGSs but does not impact the rela-

tive performance between them (Figures S1 and S2). This

is in concordance with previous results from Wang et al.

who showed that the number of SNPs and extent of herita-

bility do not strongly impact the percentage of variance

retrieved from the original simulated value.14 Similar pre-

diction performance is found for all of the non-EUR popu-

lations and, as expected, the direct method leads to higher

prediction levels than the indirect method. We therefore

focus on the results observed in the African population us-

ing the direct method. The ancestry-related heterogeneity

is the most impactful parameter and relative predictions of

the four PGSs further depend on the percentage of EUR in-

dividuals in the base dataset under simulations (Figure 2).

AS PGS is insensitive to the percentage of heterogeneity,

as it is constructed in only one population. When no het-

erogeneity is present, all meta-analysis methods present an

advantage over the AS PGS. All methods except AS are

negatively impacted by increasing proportions of hetero-

geneity, to a greater extent for the FETA method, which

loses close to 25% of performance when increasing hetero-

geneity from 0% to 50% when half of the sample is

composed of EUR individuals. In comparison, the perfor-

mance loss is lower than 10% for TAMR. As expected,

RETA PGS offers an advantage over FETA PGS when genetic

heterogeneity is present but this advantage decreases with

an increasing proportion of non-EUR. RETA still remains

negatively impacted by an increasing genetic heterogene-

ity, leading to poorer prediction performance than TAMR

PGS in ancestry-diverse samples. The performance of all

scores in AFR improves as the proportion of non-EUR in

the base sample increases. Notably, AS outperforms FETA

after a given level of heterogeneity. This threshold lowers

as the proportion of non-EUR increases, which makes AS
Hu
a better choice than FETA, and even RETA, in diverse

samples, even if the suspected heterogeneity is low

(20%–30%). While TAMR is also mildly impacted by het-

erogeneity, it maintains the best performance in most of

the situations.

Our comparisons show that AS and FETA/RETA PGS are

the most strongly impacted by the sample size and the

ancestry-related genetic heterogeneity, respectively. We

next perform simulations under real-world scenarios for

two complex traits that vary in heterogeneity, heritability

and polygenicity, and have been recently investigated in

large trans-ancestry studies: T2D22 for which we simulate

underlying liability, and triglyceride levels29 (TGs). Both

traits were recently studied in large trans-ancestrymeta-an-

alyses gathering more than 180,000 cases and 1.1 million

controls with 48.9% non-EUR samples for T2D and more

than1.65million individualswith20.2%non-EUR samples

for TGs. Since our objective is to evaluate the ideal ancestry

composition of future GWASs, we assume that these simu-

lations capture the full genetic architecture of the traits

(details are given in the supplemental methods). Briefly,

we extrapolate the results from these two studies to inform

the simulation parameters described in Table S1. We use

MR-MEGA to estimate genetic heterogeneity of effect sizes

in the two studies, which yielded a much higher value for

T2D (30%) than for TGs (1%). The heritability is estimated

from previous family-based studies as 0.42 for TGs30 and

0.31 for T2D,31 and considered to be the same across ances-

tral populations. We simulate data by gradually decreasing

the proportion of EUR individuals, starting with the level

present in those studies’ samples, to demonstrate the bene-

fits of increasing population diversity in GWASs. For TGs,

the non-EUR AS PGS increases in prediction performance

with decreasing European-ancestry proportion but never

reaches the prediction levels of the three PGSs based on

trans-ancestry meta-analyses, in concordance with previ-

ous scenarios of low heterogeneity (Figure 3 – top panel).

TAMR, FETA, and RETA PGS show high prediction levels,

stable across the percentage of European-ancestry individ-

uals, probably due to the low heterogeneity simulated.
man Genetics and Genomics Advances 4, 100214, July 13, 2023 3



Figure 3. Evaluation of the four PGS constructions for two human complex traits, triglycerides and type 2 diabetes, in the five 1000
Genomes populations
Non-European populations are simulated in equal sample sizes. Error bars represent the standard error of the mean variance explained
across 10 simulation replicates.
There is still a substantial increase in accuracy in all non-

EUR populations when they represent at least 50% of the

overall sample. For the AS PGS, optimal predictions in all

populations are reached when 20% of EUR samples are pre-

sent, i.e., when all the populations contribute equally to the

meta-analysis, predictions in EUR being dramatically lower

whendecreasing this percentage. In contrast, for T2D, FETA

PGS has a poorer performance than TAMR, RETA, and AS

PGS, in line with the results from Figure 2 with a heteroge-

neity of 30%. Different patterns are observed between

African/East-Asian and American/South-Asian populations

for AS, RETA, and TAMR. In African and East-Asian popula-

tions, AS and TAMR methods show comparable predictive

performance that are also higher than RETA. In American

and South-Asian populations, there is a loss of accuracy of

the TAMR method compared with the AS score and even

compared with the RETA score when a high proportion of

EUR is simulated. As theAfrican andEast-Asianpopulations

are geneticallymore distinct than the American and South-

Asian populations (Figure S3), we hypothesize that the

advantage of TAMR over AS PGS in these two populations

is because it better models the ancestry-related heterogene-

ity. Differences in South-Asian and American populations

could also be due to other factors not captured by the

ancestry-related heterogeneity determined from PCA. This

is supported by the fact that RETA PGS, which models het-

erogeneity butnot as a functionof genetic distance, is better

than TAMR in the South-Asian population. This is also in

concordance with a recent study fromWang et al. showing

that differences in allelic frequencies and LD patterns be-

tween populations have less impact on PGS accuracy in

the South-Asian population compared with East-Asian

andAfricanpopulations.14 Inaddition,Huanget al. showed
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that there is a large overlap of cardiometabolic loci between

South-Asian and EUR populations.32 For TAMR, AS, and

FETA, the optimal mean performance for T2D across popu-

lations is observed when the sample is ancestry-balanced,

with modest increases in predictions in non-EUR popula-

tions when less than 20% of EUR samples are simulated

but a large decrease in predictions in EUR. In this optimal

setting and evenwith a higher proportion of non-EUR sam-

ples, accuracy levels currently observed in the EUR popula-

tion are difficult to reach in non-EUR populations. This is

especially true in American and South-Asian populations

where there is a lower benefit of the TAMR PGS. To verify

whether the same trends were observed for other trans-

ancestry PGSs, we applied the recently developed CT-SLEB

method. CT-SLEB is based on a clumping and threshold

approach where multiple pruning parameters and p value

thresholds are used to construct PGSs that are then com-

bined using a super-learning algorithm.33 The impact of

the ancestry composition on the predictions depends on

the genetic heterogeneity underlying the trait (Figure S4).

When there is low heterogeneity, CT-SLEB performance de-

creases with the percentage of EUR, while the inverse trend

is observed in T2D where a higher heterogeneity is simu-

lated. As the sample size of the discovery set in the EUR

and in the target population are important in CT-SLEB, we

hypothesize that lower predictions are observed when a

lower proportion of EUR is simulated as the sample size de-

creases, while this is compensated for by the additional in-

formation brought by non-EUR samples when there is at

least genetic heterogeneity. Overall, we confirm that there

is not onemethod with the best predictions in all scenarios

but confirm the advantage of trans-ancestry PGS in non-

EUR populations from ancestry-diverse samples, including



TAMR and CT-SLEB, using scenarios approximating the ge-

netic architecture of these two traits. This highlights the

relevance of these methods for compensating current bias

in GWASs linked to unbalanced ancestry compositions.

Overall, genetic heterogeneity and its relationship with

ancestry composition of the discovery sample have the

greatest impact on the relative accuracy of the methods.

This was observed both on theoretical scenarios and on

scenarios approaching real human complex traits, T2D

and TGs. Our results highlight the advantage of meta-anal-

ysis approaches that model ancestry-related genetic het-

erogeneity, such as meta-regression, which offers optimal

accuracy levels. Nevertheless, even this method benefits

from the inclusion of non-EUR individuals, especially if

there is genetic heterogeneity underlying the trait of inter-

est, emphasizing the need to include more diverse samples

in future studies.

Our simulations were based on several simplifying as-

sumptions to reduce computational burden. First, our sim-

ulations are based on independent variants tomimic a clas-

sical approach where PGS is built upon variants obtained

from clumping and selection based on the p value of asso-

ciation.34 We did not study the impact of LD, but we hy-

pothesize that while it can have an impact on the absolute

power of the methods, it will not modify the relative per-

formance of the PGSs included in this study, as they were

all built up only on the significant SNPs. We acknowledge

the fact that many other PGS constructions exist, espe-

cially integrating all variants in the genome, but this com-

parison is beyond the scope of this work, which focuses on

comparing the accuracy of meta-analysis methods. It is

possible that genome-wide PGSs could have a better trans-

ferability to non-European populations, but we argue that

the conclusions would remain similar in supporting the

need to increase diversity at the study design in GWASs.

Second, SNPs are all simulated as associated with the

phenotype and we did not assess the impact of adding

non-causal variants for computational reasons. The simu-

lation of non-causal variants could result in lower perfor-

mance compared with our simulations even if only a small

fraction of these variants is expected to pass the signifi-

cance threshold required for inclusion in the PGS. Third,

only common variants have been considered in the traps

simulation framework. Rare variants have also been shown

to add predictive value of human complex traits35 and

tend to be most heterogeneously distributed among ances-

tries than common variants. The transferability of PGS to

non-European populations in our simulations is therefore

likely to be over-estimated, especially in the African popu-

lations. Fourth, for real trait scenarios, we estimate the

parameters under the hypothesis that the full genetic ar-

chitecture of TGs and T2D is known. Estimating the het-

erogeneity parameter is particularly hard, because the po-

wer to detect heterogeneous variants is itself limited by

non-EUR sample size. It is therefore possible that the simu-

lated heterogeneity is underestimated, which could lead to

an overestimation of the performance in our simulations.
Hu
Fifth, in our real-life scenarios, we extrapolate the number

of additional causal SNPs required to explain the full nar-

row-sense heritability of the trait. We assumed this number

grows linearly with heritability explained; however, we

expect to identify variants with smaller effect sizes explain-

ing a lower proportion of the phenotypic variance as sam-

ple sizes increase in future EUR-based GWASs. In non-EUR

populations, Morales et al. showed that a higher number of

genetic associations is also expected to emerge in future ge-

netic studies from the inclusion of African and Hispanic

populations due to their higher genetic diversity and lower

LD.36 Overall, while our simulation parameters may suffer

from biases, we argue that although these biasesmight lead

to an overestimation of the expected overall performance,

they are not likely to impact the relative performance of

the three PGS methods and the overall conclusion of this

work. Moreover, all these limits highlight the difficulty in

accurately estimating PGS predictions expected for a

wide range of human complex traits, which highly depend

on the underlying genetic architecture, and especially the

heterogeneity of the trait. Finally, we assumed PGSs were

transferrable at the population level. However, evenwithin

an ancestry-matched group, PGS predictions can be

affected by sample variables such as the age or the sex of

individuals,37 or even at fine-scale within a population.38

Our simulations are conducted using the five 1000 Ge-

nomes populations, but considering subpopulations

would probably be needed to perform a more comprehen-

sive evaluation. Veturi et al., for example, highlighted het-

erogeneity in effect sizes between European-Americans

and African-Americans39 and Kamiza et al. showed that

PGS predictions greatly varied between the sub-Saharan

and the Ugandan populations in Africa.40 This assessment

is limited by the use of the 1000 Genomes project itself for

the simulations, as studies have shown that most subpop-

ulations in the project actually represent the same underly-

ing ancestry, especially in the SAS population.41

In summary, our results from simulations both on hypo-

thetical and real trait scenarios show that PGS accuracy

highly depends on the underlying genetic architecture of

the trait, especially heterogeneity among populations. In

traits with higher levels of genetic heterogeneity, TAMR

PGS offers advantages compared with a fixed-effects

meta-analysis or an AS score but the performances are still

low given the current ancestry distribution. Predictions in

non-European populations in this setting will also most

probably benefit from the recent developments in trans-

ancestry PGS given the results obtained with CT-SLEB in

T2D scenarios. Our simulation results are in line with other

studies highlighting the poor transferability of PGS to non-

EUR populations11,14 and support the urgent need to

increase diversity in future genetic studies. Several large ge-

netic projects are moving in that direction, such as the

Uganda Genome Resource,42 the H3Africa project,43,44 or

the GenomeAsia 100K project45 focusing on specific large

ancestries, and the PAGE study10 or the IHCC46 integrating

multi-continental ancestries. This translation will require
man Genetics and Genomics Advances 4, 100214, July 13, 2023 5



new collaborations and a shift in the overall conception of

genetic studies5,47 but will undoubtedly lead to better

comprehension of human complex traits. The translation

to non-EUR populations represents the next step to widely

accessible precision medicine48 and is crucial to redress ex-

isting health disparities where using European-based data

could lead to wrong conclusions in other populations.13
Data and code availability

The traps procedure is available at https://github.com/hmgu-itg/

traps along with examples.
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